首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The characteristics of hematin uptake were examined in three malignant cell lines [L1210 leukemia, 745 murine erythroleukemia (MEL) and Walker carcinoma (W256)], a cell line derived from normal rat liver (BRL-3A) and a normal embryonic cell, chick embryo fibroblasts (CEF). Uptake in the normal liver cell line was slight and occurred at a slow rate in contrast to the rapid uptake, which was more rapid and of greater magnitude in the three tumor cell lines, Saturation of the heme uptake mechanism was observed in MEL cells at an extra-cellular hematin concentration of 160 micro M and in L1210 cells at 300 micro M. At saturation L1210 cells achieved a cellular heme concentration nine times as high as MEL cells. Hematin uptake in MEL cells was markedly augmented by pretreatment with DMSO, procaine, detergent or proteolytic enzymes or by increases in the pH of the medium from 8 to 9.5. In contrast to MEL cells where SA inhibits growth by lowering cellular heme, the inhibition of growth of L1210 cells by SA appears to operate by a mechanism independent of heme. In gradual increase in hematin uptake capacity in MEL cells over a period of days. Afer exposure of MEL cells to a high concentration of hematin in the medium, the egress of heme was followed under various conditions. Of the various agents studied, only cyanide produced a loss of heme from MEL cells.  相似文献   

2.
Vitreoscilla hemoglobin (VHb) is accumulated at high levels in both soluble and insoluble forms when expressed from its native promoter on a pUC19-derived plasmid in Escherichia coli. Examination by atomic absorption spectroscopy and electron paramagnetic resonance spectroscopy revealed that the insoluble form uniformly lacks the heme prosthetic group (apoVHb). The purified soluble form contains heme (holoVHb) and is spectroscopically indistinguishable from holoVHb produced by Vitreoscilla cells. This observation suggested that a relationship may exist between the insolubility of apoVHb and biosynthesis of heme. To examine this possibility, a series of experiments were conducted to chemically and genetically manipulate the formation and conversion of 5-aminolevulinic acid (ALA), a key intermediate in heme biosynthesis. Chemical perturbations involved supplementing the growth medium with the intermediate ALA and the competitive inhibitor levulinic acid which freely cross the cell barrier. Genetic manipulations involved amplifying the gene dosage for the enzymes ALA synthase and ALA dehydratase. Results from both levulinic acid and ALA supplementations indicate that the level of soluble holoVHb correlates with the heme level but that the level of insoluble apoVHb does not. The ratio of soluble to insoluble VHb also does not correlate with the level of total VHb accumulated. The effect of amplifying ALA synthase and ALA dehydratase gene dosage is complex and may involve secondary factors. Results indicate that the rate-limiting step of heme biosynthesis in cells overproducing VHb does not lie at ALA synthesis, as it reportedly does in wild-type E. coli (S. Hino and A. Ishida, Enzyme 16:42-49, 1973).  相似文献   

3.
Regulation of delta-aminolevulinic acid (ALA) synthase and heme oxygenase was analyzed in primary rat hepatocytes and in two immortalized cell lines, CWSV16 and CWSV17 cells. ALA synthase was induced by 4,6-dioxohepatnoic acid (4,6-DHA), a specific inhibitor of ALA dehydratase, in all three systems; however, the induction in CWSV17 cells was greater than in either of the other two systems. Therefore, CWSV17 cells were used to explore the regulation of both enzymes by heme and 4,6-DHA. Data obtained from detailed concentration curves demonstrated that 4,6-DHA induced the activity of ALA synthase once ALA dehydratase activity became rate-limiting for heme biosynthesis. Heme induced heme oxygenase activity with increases occurring at concentrations of 10 microM or greater. Heme blocked the 4,6-DHA-dependent induction of ALA synthase with an EC50 of 1.25 microM. Heme-dependent decreases of ALA synthase mRNA levels occurred more quickly and at lower concentrations than heme-dependent increases of heme oxygenase mRNA levels. ALA synthase mRNA remained at reduced levels for extended periods of time, while the increases in heme oxygenase mRNA were much more transient. The drastic differences in concentrations and times at which heme-dependent effects were observed strongly suggest that two-different heme-dependent mechanisms control the ALA synthase and heme oxygenase mRNAs. In CWSV17 cells, heme decreased the stability of ALA synthase mRNA from 2.5 to 1.3 h, while 4,6-DHA increased the stability of the mRNA to 5.2 h. These studies demonstrate that regulation of ALA synthase mRNA levels by heme in a mammalian system is mediated by a change in ALA synthase mRNA stability. The results reported here demonstrate the function of the regulatory heme pool on both ALA synthase and heme oxygenase in a mammalian hepatocyte system.  相似文献   

4.
The effects of 4,6-dioxoheptanoic acid (succinylacetone, SA), an inhibitor of delta-aminolevulinic acid dehydratase, on total iron uptake, heme synthesis, and globin synthesis were studied in rat marrow cells in culture in order to examine the coordination of heme and globin synthesis. SA inhibited heme synthesis in both control and erythropoietin-stimulated cells in a dose-dependent fashion; at 10(-3) M, inhibition was complete, whereas at 10(-7) M, there was no significant effect. Inhibition of total iron uptake was also dose-dependent although, at 10(-3) M, it was not complete. The inhibition of heme synthesis by SA was partially overcome by addition of 10(-4) M porphobilinogen or protoporphyrin IX. SA caused an almost complete suppression of globin formation in both erythropoietin-stimulated and unstimulated cells as early as five hours after the addition of the inhibitor. When inhibition of heme synthesis was incomplete, globin synthesis was partially inhibited. These results indicate that heme synthesis is required for erythropoietin-mediated induction of globin synthesis in cultured bone marrow cells.  相似文献   

5.
The effect of Ni2+ on the early stages of chlorophyll biosynthesis and pheophytinization in Euglena gracilis cells was studied. Incubation of the cells with 10–4 M Ni2+ for 7 days resulted in a higher chlorophyll content, enhanced production of 5-aminolevulinic acid (ALA), and in increased activity of 5-aminolevuluinic acid dehydratase (EC 4.2.1.24, ALAD), as compared to the control cells incubated without Ni2+. At a higher concentration (10–3 M), Ni2+ markedly inhibited chlorophyll accumulation and ALAD activity, as compared to the control cells. At this concentration, Ni2+ also inhibited heme biosynthesis and strongly stimulated ALA production. It seems likely that, by affecting heme synthesis, Ni2+ increases the activity of the ALA production system. However, the suppression of subsequent stages of ALA conversion to chlorophyll, in particular ALAD inhibition, ultimately resulted in almost complete inhibition of chlorophyll biosynthesis. In addition to cessation of de novo chlorophyll synthesis in the presence of Ni2+ (10–3 M) in Euglena cells, the existing chlorophyll was converted into pheophytin and almost completely degraded. We suppose that the Ni2+-induced pheophytinization is caused by an acidic shift of intracellular pH related to an impairment of cell membrane permeability by Ni2+ cations.  相似文献   

6.
1. Growth rates, morphology, plasma protein synthesis and the level of heme pathway enzymes were examined in six sublines of HepG2 cells obtained from various laboratories. 2. Five sublines represented by G2a display the known characteristics of HepG2 cell type, including morphology, plasma protein synthesis and an increase in delta-aminolevulinic acid (ALA) dehydratase activities in response to Me2SO treatment. 3. In contrast, cells of the G2f subline failed to secrete significant quantities of plasma proteins. There was also no increase in ALA dehydratase activity following Me2SO treatment. These findings suggest that G2f cells represent a variant of HepG2 cells with an altered phenotype.  相似文献   

7.
The coordination of transferrin receptor (TfR) expression and heme synthesis was investigated in mouse erythroleukemia (MEL) cells of line 707 treated with heme synthesis inhibitors or in a variant line Fw genetically deficient in heme synthesis. Cells of line 707 were induced for differentiation by 5 mM hexamethylene bisacetamide (HMBA). TfR expression increased in the course of induction, as judged by increased TfR mRNA synthesis, increased cytoplasmic TfR mRNA level, and by the increased number of cellular 125I-Tf binding sites. Addition of 0.1 mM succinylacetone (SA) decreased cellular TfR to the level comparable with the uninduced cells. The decrease was reverted by the iron chelator desferrioxamine (DFO) but not by exogenous hemin. In short-term (1-2 hours) incubation, SA inhibited 59Fe incorporation from transferrin into heme, whereas total cellular 59Fe uptake was increased. A decrease in TfR mRNA synthesis was apparent after 2 hours of SA treatment. Conversely, glutathione peroxidase mRNA synthesis, previously shown to be inducible by iron, was increased by SA treatment. Cells of heme deficient line Fw did not increase the number of Tf binding sites after the induction of differentiation by 5 mM sodium butyrate. SA had no effect on TfR expression in Fw cells. The results suggest that the depletion of cellular non-heme iron due to the increase in heme synthesis maintains a high level of transferrin receptor expression in differentiating erythroid cells even after the cessation of cell division.  相似文献   

8.
This study examined the possibility that generation of heme within mitochondria may provide a local concentration sufficient to inhibit the activity of delta-aminolevulinic acid (ALA) synthase, the enzyme that catalyzes the rate-limiting step in hepatic heme biosynthesis. This was accomplished by simultaneously running ALA synthase and heme synthase activities in intact mitochondria isolated from rat liver. Radiochemical assays were used to measure the enzyme activities. ALA synthase activity did not decrease as the rate of heme formation was increased by varying the concentration of substrates for heme synthase. Even at a rate of heme generation estimated to be at least 75 times the rate occuring in vivo, ALA synthase activity was unchanged. We conclude that end product inhibition of ALA synthase activity by heme is not an important physiological mechanism for regulation of hepatic heme biosynthesis.  相似文献   

9.
Heme synthesis by erythroid progenitor cells is maintained by erythropoietin (EP), insulin-like growth factor-I (IGF-I), and stem cell factor (SCF), and without these growth factors apoptosis (programmed cell death) occurs. To clarify the possible interaction between heme synthesis and programmed cell death of human erythroid progenitor cells, the effect of specific inhibition of heme synthesis on apoptosis of highly purified human erythroid colony forming cells (ECFC) was studied. When the amount of uncleaved DNA was determined as a measure of apoptosis, the heme synthesis inhibitors, succinylacetone (SA) (0.1 mmol/L) or isonicotinic acid hydrazide (INH) (10 mmol/L), significantly decreased the amount of uncleaved DNA (P < 0.01) in the presence of erythropoietin (EP). Addition of recombinant heavy-chain ferritin (rHF) (10 nmol/L), or deprivation of transferrin from the culture medium, which decreased heme synthesis, also reduced the amount of uncleaved DNA (P < 0.01). The production of apoptosis by diverse inhibitors of heme synthesis was in each case reversed by the addition of hemin (0.1 mmol/L) and did not occur with HL-60 cells. When the colony-forming capacity of ECFC was determined by plasma clot assay, SA, INH, or rHF reduced the number of CFU-E (P < 0.01), and the effect of SA was reversed by hemin. The addition of SA did not alter the c-myc response of ECFC to EP. These data indicate that inhibition of heme synthesis induces apoptosis of human erythroid progenitor cells, in a manner independent of an early c-myc response, and suggest that the presence of apoptosis in ineffective erythropoiesis may be secondary to impaired heme synthesis. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Requirement of heme for growth of Bacteroides fragilis.   总被引:11,自引:2,他引:9       下载免费PDF全文
Heme or protoporphyrin IX was required for growth of Bacteroides fragilis in a defined medium. The amount of heme necessary for half-maximal growth was 2 to 10 ng/ml (3.8 to 15 pmol/ml) among the Bacteroides species and strains tested. The growth rate, metabolic products from glucose fermentation, and cell yields were affected by the concentration of heme in the medium and by the length of time the culture was incubated. When heme was growth limiting (4 ng/ml), growth rates decreased by 50%, cultures started producing lactic and fumaric acids, and the cell yields declined. The cell yield for B. fragilis (ATCC 25285) at 24 h in medium containing 6.5 microgram of heme per ml was 69 g (dry weight) of cells per mol of glucose compared to 16 g (dry weight) of cells per mol of glucose with 4 ng of heme per ml. B. fragilis was unable to grow in defined medium when a porphyrin precursor, delta-aminolevulenic acid or porphobilinogen, was added in place of heme.  相似文献   

11.
A study on hepatic heme metabolism with special emphasis to ALA synthetase, ALA dehydratase and heme oxygenase was carried out in cadmium exposed freshwater fish Channa punctatus to enlighten the mechanism of cadmium induced toxicity. Cadmium exposure (0.5-5.0 mg/1) for 7 days increased the hepatic level of ALA, along with the depletion in heme content, which are characteristic to chemical porphyria. The resultant enhancement in the activities of ALA synthetase and heme oxygenase were further shown to be dose dependent. ALA dehydratase activity on the other hand was enhanced only at higher exposure. Time course studies on the enzyme activities and heme content showed that ALA synthetase started to increase after 24 hrs., reached maximum at 7 days and came back nearly to normal level after 30 days of exposure. Simultaneously maximum depletion in heme level occurred on 7 days of exposure, tending to return to normal on 30 day. In addition, attempt has been made to correlate alterations in heme metabolism due to cadmium with the histopathological manifestations in liver.  相似文献   

12.
The seed germination and seedling growth of pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee cv. Hanxiao) were not significantly inhibited until the concentration of NaCl was increased to 150 mmol/L. Treatment of pakchoi seeds with exogenous 5-aminolevulinic acid (ALA), at concentrations ranging from 0.01 to 10.00 mg/L, promoted seed germination when seeds were stressed by salinity, whereas levulinic acid (LA), an inhibitor of ALA dehydrase, significantly inhibited seed germination and seedling growth, suggesting that metabolism of ALA into porphyrin compounds was necessary for seed germination and seedling growth. Determination of respiratory rate during seed germination showed that ALA increased seed respiration under both normal conditions and salt stress. Furthermore, salt stress decreased levels of endogenous ALA, as well as heme, in etiolated seedlings. More salt-tolerant cultivars of pakchoi contained higher relative levels of endogenous ALA and heme under conditions of salt stress. These results indicate that salt stress may inhibit the biosynthesis of endogenous ALA and then heme, which is necessary for seed germination, and treatment of seeds with exogenous ALA prior to germination may be associated with the biosynthesis of heme.  相似文献   

13.
Addition of hemin (5–200 μM) to a rabbit reticulocyte iron-free incubation medium, resulted in a progressive inhibition of heme synthesis as measured by incorporation of (14C)-glycine. In contrast when (14C) δ-aminolevulinic acid incorporation into heme was studied, significant inhibition below that of the (14C)-glycine control only occurred with hemin concentrations greater than 100 μM. Hemin progressively inhibited cellular and mitochondrialδ-aminolevulinic acid synthetase activity, as well as cellular δ-aminolevulinic acid dehydratase activity. The results indicated that elevated levels of hemin initially control heme synthesis by feedback inhibition at the rate-limiting enzyme of heme synthesis, δ-aminolevulinic acid synthetase. Hemin inhibition of δ-aminolevulinic acid dehydratase is only significant for the entrire heme synthetic pathway when greater than one-third of this enzyme's activity is inhibited.  相似文献   

14.
The seed germination and seedling growth of pakchoi (Brassica campestris ssp. chinensis var.communis Tsen et Lee cv. Hanxiao) were not significantly inhibited until the concentration of NaCl was increased to150 mmol/L. Treatment of pakchoi seeds with exogenous 5-aminolevulinic acid (ALA), at concentrations ranging from 0.01 to 10.00 mg/L, promoted seed germination when seeds were stressed by salinity, whereas levulinic acid (LA), an inhibitor of ALA dehydrase, significantly inhibited seed germination and seedling growth, suggesting that metabolism of ALA into porphyrin compounds was necessary for seed germination and seedling growth. Determination of respiratory rate during seed germination showed that ALA increased seed respiration under both normal conditions and salt stress. Furthermore, salt stress decreased levels of endogenous ALA, as well as heme, in etiolated seedlings. More salt-tolerant cultivars of pakchoi contained higher relative levels of endogenous ALA and heme under conditions of salt stress.These results indicate that salt stress may inhibit the biosynthesis of endogenous ALA and then heme,which is necessary for seed germination, and treatment of seeds with exogenous ALA prior to germination may be associated with the biosynthesis of heme.  相似文献   

15.
Effects of modulators of protein phosphorylation on delta-aminolevulinic acid (ALA) synthase and heme oxygenase-1 mRNA were analyzed in the human hepatic cell lines Huh-7 and HepG2 using a quantitative RNase protection assay. Okadaic acid was found to induce ALA synthase mRNA in a concentration-dependent fashion in both Huh-7 and HepG2 cells. The EC(50) for induction of ALA synthase mRNA in Huh-7 cells was 13.5 nM, with maximum increases occurring at okadaic acid concentrations of 25-50 nM. The EC(50) for induction of ALA synthase mRNA in HepG2 cells was 35.5 nM, with maximum increases occurring at okadaic acid concentrations of 50 nM. Concentration-dependent induction of ALA synthase mRNA paralleled the increase in ALA synthase protein. Maximum induction of ALA synthase was observed between 5 and 10 h post-treatment in both cell lines. Induction of ALA synthase mRNA in Huh-7 cells, but not HepG2 cells, was associated with an increase in ALA synthase mRNA stability. Okadaic acid also induced heme oxygenase-1 mRNA in both cell lines, but the magnitude of induction was only twofold, and was rapid and transient. Okadaic acid and phorbol 12-myristate 13-acetate significantly decreased heme-mediated induction of heme oxygenase-1 mRNA in both Huh-7 and HepG2 cells. Wortmannin diminished the heme-mediated induction of heme oxygenase-1 mRNA in HepG2 cells, but not Huh-7 cells. These results report a novel property of okadaic acid to affect heme metabolism in human cell lines.  相似文献   

16.
The degradation of cytochrome P-450 heme in the liver has been studied by a new approach. In rats, hepatic heme was labeled by administration of a tracer pulse of [5-14C]δ-aminolevulinic acid (ALA), and its degradation was analyzed in terms of labeled carbon monoxide (14CO) excretion, which is a specific degradation product of the labeled heme. Within minutes after administration of [5-14C]ALA, 14CO was detectable and increased after 2 h to an “early peak,” reflecting the elimination of labeled heme from a rapidly turning over pool in the liver. Beyond the early peak, the rate of 14CO production decreased in a log-linear manner, consistent with the degradation of heme in stable hepatic hemoproteins. From the rate at which 14CO production declined during this phase, from the predominant labeling of cytochrome P-450 heme by the administered [5-14C]ALA and from the known turnover characteristics of this hemoprotein in the liver, it could be inferred that production of 14CO—between 16 and 30 h after administration of labeled ALA—largely reflected degradation of cytochrome P-450 heme. This approach, which permits serial measurements in a single animal, was used to study the effect on cytochrome P-450 heme of administered heme or endotoxin, both of which are potent stimulators of hepatic heme oxygenase activity. Both of these substances caused marked acceleration of the degradation of cytochrome P-450 heme, the effect occurring over the same dose range as that for stimulation of hepatic heme oxygenase. The findings suggest that stimulation of this enzyme activity in the liver is closely related to the rate of degradation of cytochrome P-450 heme.  相似文献   

17.
Wild-type Saccharomyces cerevisiae do not accumulate exogenous sterols under aerobic conditions, and a mutant allele conferring sterol auxotrophy (erg7) could be isolated only in strains with a heme deficiency. delta-Aminolevulinic acid (ALA) fed to a hem1 (ALA synthetase-) erg7 (2,3-oxidosqualene cyclase-) sterol-auxotrophic strain of S. cerevisiae inhibited sterol uptake, and growth was negatively affected when intracellular sterol was depleted. The inhibition of sterol uptake (and growth of sterol auxotrophs) by ALA was dependent on the ability to synthesize heme from ALA. A procedure was developed which allowed selection of strains which would take up exogenous sterols but had no apparent defect in heme or ergosterol biosynthesis. One of these sterol uptake control mutants possessed an allele which allowed phenotypic expression of sterol auxotrophy in a heme-competent background.  相似文献   

18.
The activity of the following enzymes involved in the biosynthesis of porphyrins was determined in two strains of Trypanosoma cruzi (Y and CL) grown in two culture media (LIT and Warren): succinyl coenzyme A synthetase (Suc.CoA-S), 5-aminolevulinate synthetase (ALA-S), 4,5-dioxovaleric acid transaminase (DOVA-T), 5-aminolevulinate dehydratase (ALA-D), porphobilinogenase (PBGase), deaminase and heme synthetase (Heme-S). The amount of 5-aminolevulinic acid (ALA) and porphobilinogen, porphyrins and heme was also determined. ALA and PGB were detected in both strains of T. cruzi. However, ALA was not detected in epimastigotes of the Y strain grown in the LIT medium. The content of ALA and PBG varied according to the strain and the growth medium. No free porphyrins and heme were detected in both strains of T. cruzi. The activity of Suc.CoA-S and DOVA-T was markedly influenced by the strains of the parasite and the growth medium. No significant DOVA-T activity was detected in epimastigotes of the CL strain grown in the Warren's medium. No significant activity of ALA-D, PBGase and deaminase was detected in T. cruzi. Activity of Heme-S was detected in both strains of T. cruzi when mesoporphyrin, protoporphyrin or deuteroporphyrin was used as substrate. The enzyme activity was influenced by the strain of the parasite, the growth medium and the substrate used.  相似文献   

19.
The activity of the following enzymes involved in the biosynthesis of porphyrins was determined in endosymbiote-free and endosymbiote-containing Crithidia deanei grown in a chemically defined medium: succinyl Coenzyme A synthetase (Suc.CoA-S), 5-aminolevulinate synthetase (ALA-S), 4,5-dioxovaleric acid transaminase (DOVA-T), 5-aminolevulinate dehydratase (ALA-D), porphobilinogenase (PBGase), deaminase and heme synthetase (Heme-S). The amount of 5-aminolevulinic acid (ALA) and porphobilinogen, porphyrins and heme was also determined. ALA and PBG were detected in C. deanei. The levels of free porphyrins was low. Heme concentration was nil. The activity of ALA-D, deaminase and PBGase was not detected in C. deanei. The activity of Suc.CoA-S and ALA-S were twice higher in symbiote-containing than in aposymbiotic C. deanei. Aposymbiotic cells had a higher activity of DOVA-T than symbiote-containing cells. The level of Heme-S, measured using protoporphyrin as substrate, was twice as high in symbiote-containing than in symbiote-free cells.  相似文献   

20.
Succinylacetone (SA), a metabolic end-product found in urine from individuals with hereditary tyrosinemia and associated renal Fanconi syndrome and a known inhibitor of hepatic 5-aminolevulinic acid dehydratase (ALAD), has been used to study heme metabolism in isolated rat renal tubules. Heme biosynthetic porphyrin precursors are increased selectively in the presence of 4 mmol/1 SA. Total porphyrin content of the tubules are increased approximately 2-fold, while both ferrochelatase and heme oxygenase activities remain unaffected by SA. Nonetheless, total heme content is reduced, as was incorporation of radioactive label from amino[14C]levulinic acid. Cytochrome P-450 content remained unaffected. Impairment of iron uptake and/or transport within the cell or enhancement of heme catabolism via a non-heme oxygenase-dependent pathway could explain the observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号