首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated a mathematical model of the dynamics of the ecological system consisting of two competing perennial species, each of which leads a sedentary life. It is an individual-based model, in which the growth of each individual is described. The rate of this growth is weakened by competition from neighboring individuals. The strength of the competitors' influence depends on their size and distance to them. The conditions, in which the competitive exclusion of one of the competitors and the coexistence of both competitors take place are provided. The influence of the parameters responsible for the strength of competition, the degree of competitive asymmetry, and consideration of the importance of specific elements of the spatial structure of this ecological system on the results of the competition were analyzed. Both species co-exist when they are equal competitors. Permanent coexistence is possible only when interspecific competition is weaker than intraspecific. When interspecific competition is stronger, the coexistence of equal interspecific competitors is random. Both species have equal probability of extinction. If species are not equal competitors, the stronger one wins. This result can be modified by different strengths of intraspecific competition. The weaker interspecific competitor can permanently coexist with stronger one, when its individuals suffer stronger intraspecific competition.  相似文献   

2.
Phytoplankton communities reveal an astonishing biodiversity, whereas classical competition theory seems to suggest that only a few competing species can survive. Recently we suggested a new solution to this plankton paradox. In theory, at least, competition between multiple species can generate complex dynamics that can support a large number of species. How likely is it then, in reality, that competitive chaos indeed promotes biodiversity? To obtain some insight, we simulated multispecies competition according to five different physiological scenarios. For random species parameters, biodiversity was generally low. Assuming plausible physiological trade‐offs, the simulations revealed switches back and forth between equilibrium and nonequilibrium dynamics, and a higher biodiversity. An extremely high biodiversity, with sometimes more than 100 species on three resources, was observed in simulations that assumed a cyclic relation between competitive abilities and resource contents. We conclude that physiological and life‐history patterns have a major impact on the likelihood of nonequilibrium dynamics and on the biodiversity of plankton communities.  相似文献   

3.
4.
Growth dynamics of Pseudomonas aeruginosa, Burkholderia cepacia, and Staphylococcus aureus in a batch and chemostat, were investigated as a laboratory model system for persistent infections in cystic fibrosis. Most species-specific enumeration methods for mixed cultures are laborious or only qualitative, and therefore impede generation of quantitative data required for validation of mathematical models. Here, a quantitative T-RFLP method was evaluated and applied for specific and absolute cell number enumerations. The method was tested to be unbiased by quantitative sample composition and allowed reproducible enumerations of mixed cultures. For assay validation, samples of defined concentration containing one, two or three species were quantified. Logarithmically transformed absolute cell numbers of single-species dilutions were linear within a lower working range of 10(4)-10(6) cfu/mL (species-dependent) and an upper working range of 10(10) cfu/mL. Quantifications of single species (10(6)-10(10) cfu/mL) spiked with one or two other species agreed well with single species controls. Differences between slopes of first order linear regression of spiked and pure dilution series were insignificant. Coefficient of variation of defined mixed replicates was maximum 4.39%, of a three-species chemostat it was maximum 1.76%. T-RFLP monitoring of pure cultures in parallel shake flasks and of a three-species mixed chemostat gave very consistent results. Coexistence of at least two species after a time period equivalent to more than 33 volume exchanges was found. This result was not predicted from pure cultures clearly indicating the need for quantitative mixed culture experiments to better understand microbial growth dynamics and for mathematical model validation.  相似文献   

5.
Many theoretical studies of evolution are based upon the concepts of the evolutionary stable strategy and optimal life-history solutions. An individual based model of vegetation is used to simulate life-history evolution under two different sets of environmental conditions. At one level the results suggest that optimal life-history solutions do appear to evolve. At the end of the simulations the vegetation that evolved in a fertile and uncut environment was taller, thinner and germinated later than that which developed in a less fertile and cut habitat. However, between simulation variation was observed to be high, particularly for the parameter regulating the timing of reproduction, and it showed no indication of reaching fixation. When this trait was prevented from mutating, the variances of other traits were seen to increase. Although at the population level between simulation variation was high, some traits achieved a degree of stability within simulations, suggesting that multiple adaptive peaks may be being approached. However, there was little evidence of trait fixation occurring within the most abundant genotype. It is considered that frequency dependent selection/Red Queen dynamics may be acting to prevent the most abundant genotype from reaching fixation. It is argued that if such processes prevent optimal genetic solutions from being achieved then the search for evolutionary stable strategies within the evolution of life-histories may be over simplistic.  相似文献   

6.
General response patterns of fish populations tostress, originally proposed by Colby for fisheriesrehabilitation and later adapted by Munkittrick forcontaminants, were evaluated using an individual-basedsimulation model. General response patterns relatechanges in population-level variables to the type ofstress. The model follows the daily growth,mortality, and spawning of individual yellow perch andwalleye through their lifetime, and was corroboratedusing Oneida Lake data. Two versions of the model wereused: population (yellow perch only) and community(dynamic predation on yellow perch by walleye). Eightstresses were imposed on the population and communityversions of the model and 100-year simulations wereperformed. Response patterns were defined by changesin predicted yellow perch mean population abundance,mean age of adults, and mean adult growth (representedby mean length at age-7). Proposed response patternswere similar to those predicted using the populationversion of the model. Simulations using the communityversion of the model distorted the response patterns,either causing amplification, dampening, or reversalof many of the patterns. Predicted response patternsbecame unique when additional variables were included.Our model results suggest that caution is appropriatein interpreting general response patterns based onmean age, or when the population of interest plays amajor role in a relatively simple food web. The responsepattern approach may be better at identifying the lifestage impacted rather than the mechanism of the stress.  相似文献   

7.
Facilitating coexistence between people and wildlife is a major conservation challenge in East Africa. Some conservation models aim to balance the needs of people and wildlife, but the effectiveness of these models is rarely assessed. Using a case‐study approach, we assessed the ecological performance of a pastoral area in northern Tanzania (Manyara Ranch) and established a long‐term wildlife population monitoring program (carried out intermittently from 2003 to 2008 and regularly from 2011 to 2019) embedded in a distance sampling framework. By comparing density estimates of the road transect‐based long‐term monitoring to estimates derived from systematically distributed transects, we found that the bias associated with nonrandom placement of transects was nonsignificant. Overall, cattle and sheep and goat reached the greatest densities and several wildlife species occurred at densities similar (zebra, wildebeest, waterbuck, Kirk's dik‐dik) or possibly even greater (giraffe, eland, lesser kudu, Grant's gazelle, Thomson's gazelle) than in adjacent national parks in the same ecosystem. Generalized linear mixed models suggested that most wildlife species (8 out of 14) reached greatest densities during the dry season, that wildlife population densities either remained constant or increased over the 17‐year period, and that herbivorous livestock species remained constant, while domestic dog population decreased over time. Cross‐species correlations did not provide evidence for interference competition between grazing or mixed livestock species and wildlife species but indicate possible negative relationships between domestic dog and warthog populations. Overall, wildlife and livestock populations in Manyara Ranch appear to coexist over the 17‐year span. Most likely, this is facilitated by existing connectivity to adjacent protected areas, effective anti‐poaching efforts, spatio‐temporal grazing restrictions, favorable environmental conditions of the ranch, and spatial heterogeneity of surface water and habitats. This long‐term case study illustrates the potential of rangelands to simultaneously support wildlife conservation and human livelihood goals if livestock grazing is restricted in space, time, and numbers.  相似文献   

8.
The objective of this study was to predict interannual fluctuations in the emergence period of sea trout fry, using models developed from field data for 70 excavated redds, and laboratory data on egg and alevin development at 30 constant temperatures (range 1·5–10·5° C with 100 naturally fertilized eggs at each temperature). Egg weight and numbers per redd both increased with female length; a power function described the relationship. Early spawners were the largest females laying the largest and most numerous eggs, whilst late spawners were the smallest females laying the smallest and least numerous eggs; middle spawners being intermediate between these two extremes. Mean values for egg weight and numbers of eggs per redd were obtained for these three groups. Hatching and emergence times in the laboratory decreased with increasing temperature. Of five models tested for hatching time, the best fit was provided by a three-parameter hyperbolic model which formed the asis of the individual-based model used to predict egg hatching and fry emergence. Model development was described in detail and the final equations predicted the times taken for 5, 50 and 95% of the fry to emerge, and hence the period over which 90% of the fry emerged. Analogous models were obtained for egg hatching. All models were excellent fits to the laboratory data. Hatching times for eggs kept in perforated boxes in the stream were almost identical to those kept at similar mean temperatures in the laboratory. Model predictions of fry emergence times were validated by field data for 8 years (1967–1971, 1974, 1975, 1980). The chief objective was therefore fulfilled, and predictions for the 30-year study (1967–1996) revealed a large variation in the timing of emergence (extremes: 11 March–4 April 1989, 15–20 May 1979). Most of the variation in median emergence date was due to variations in water temperature, with spawning dates as a secondary factor; the latter, however, had a greater effect on the length of the emergence period.  相似文献   

9.
Local competition for space across a wide array of taxa typically involves three mechanisms that we denote here as expansion (spreading into unoccupied habitat), lottery (replacing dead competitors), and overgrowth (encroaching on competitors along zones of contact). By formulating and analysing a simple, general model incorporating these features, we identify ecological conditions and life‐history features that lead to stable coexistence or competitive exclusion (with or without initial‐condition dependence) and gain insight by linking these to case studies in the literature. We demonstrate the importance of contact inhibition, a little‐studied feature of overgrowth, and we show how life‐history tradeoffs may influence and be influenced by local competition for space. The general model we present can help indicate whether local interactions are sufficient to explain patterns of coexistence or exclusion and can serve as the foundation for more specific, realistic models of spatial competition.  相似文献   

10.
The existence of multiple attractors in a competition model implies that the question of coexistence vs. extinction can depend on initial conditions. A discrete stage-structured model of two competing species is derived from a well-tested single-species model of insect populations, and is shown to exhibit multiple attractors for parameter values similar to those used in laboratory experiments which demonstrated chaos in population dynamics. The corresponding basins of attraction are investigated and shown to have very complex structures, and the initial stage structure of the populations is shown to have a significant impact on final outcomes.  相似文献   

11.
基于个体的集水区森林动态模型   总被引:1,自引:0,他引:1  
研制了基于个体的在景观尺度上运行的森林动态模型CFDM(individual-based catchmentscale forest dynamic model),介绍了CFDM模型的研制和检验过程,以及GIS技术的应用、气候和生理因子的参数化.对卧龙保护区一个139hm2小集水区进行了400年的模拟(包括地形数据的预处理、改进的山地小气候模型的运算和森林动态模拟).结果表明:CFDM模型能够描述林木个体的生理过程与空间分布,进而实现对整个集水区范围内森林的空间格局及其动态的模拟.  相似文献   

12.
The principle of competitive exclusion is a fundamental tenet of ecology. Commonly used competition models predict that at most only one species per limiting resource can coexist in the same environment at steady state; hence, the upper limit to species diversity depends only on the number of limiting resources and not on the rates of resource supply. We demonstrate that such model behavior is the result of both the growth and biomass turnover functions being proportional to the population biomass. We argue that at least the growth function should be a nonlinear, concave downward function of biomass. This form for the growth function should arise simply because of changes in the allometry of individuals in the population. With this change in model structure, we show that any number of species can coexist at an asymptotically stable steady state, even where there is only one limiting resource. Furthermore, if growth increases nonlinearly with biomass, the steady-state resource concentration and hence the potential for biodiversity increases as the resource supply rate increases. Received 31 August 2001; accepted 10 April 2002.  相似文献   

13.
14.
That competition is stronger among closely related species and leads to phylogenetic overdispersion is a common assumption in community ecology. However, tests of this assumption are rare and field‐based experiments lacking. We tested the relationship between competition, the degree of relatedness, and overdispersion among plants experimentally and using a field survey in a native grassland. Relatedness did not affect competition, nor was competition associated with phylogenetic overdispersion. Further, there was only weak evidence for increased overdispersion at spatial scales where plants are likely to compete. These results challenge traditional theory, but are consistent with recent theories regarding the mechanisms of plant competition and its potential effect on phylogenetic structure. We suggest that specific conditions related to the form of competition and trait conservatism must be met for competition to cause phylogenetic overdispersion. Consequently, overdispersion as a result of competition is likely to be rare in natural communities.  相似文献   

15.
Climate change is expected to have profound ecological effects, yet shifts in competitive abilities among species are rarely studied in this context. Blue tits (Cyanistes caeruleus) and great tits (Parus major) compete for food and roosting sites, yet coexist across much of their range. Climate change might thus change the competitive relationships and coexistence between these two species. Analysing four of the highest-quality, long-term datasets available on these species across Europe, we extend the textbook example of coexistence between competing species to include the dynamic effects of long-term climate variation. Using threshold time-series statistical modelling, we demonstrate that long-term climate variation affects species demography through different influences on density-dependent and density-independent processes. The competitive interaction between blue tits and great tits has shifted in one of the studied sites, creating conditions that alter the relative equilibrium densities between the two species, potentially disrupting long-term coexistence. Our analyses show that long-term climate change can, but does not always, generate local differences in the equilibrium conditions of spatially structured species assemblages. We demonstrate how long-term data can be used to better understand whether (and how), for instance, climate change might change the relationships between coexisting species. However, the studied populations are rather robust against competitive exclusion.  相似文献   

16.
17.
18.
For several decades, behavioral ecologists have studied theeffects of the environment on the behavior of individuals;but only fairly recently they have started to ask the reversequestion: how do the behavioral strategies of individuals affectthe composition and dynamics of populations and communities?Although intuitively obvious, this feedback from individualto higher levels is difficult to demonstrate, except in systemswith exceptionally fast and marked responses of the populationsto the behavior of its members. Such a system exists in sperm-dependentspecies. In European water frogs, for instance, successfulreproduction of a hybrid species (R. esculenta, genotype LR)requires mating with one of its parental species (R. lessonae,genotype LL), except in the rare cases where hybrids are triploid.The sexual host LL, however, should avoid matings with the sexual parasite LR, because the resulting LR offspring willeliminate the L genome from their germ line. In this studywe investigate how this conflict is solved. Since water froghybrids come in both sexes, rather than as females only likein other sperm-dependent systems, we performed the tests withboth females and males. One individual was given a choice betweentwo individuals of the opposite sex, one an LL and the otheran LR. In both species, females showed the predicted preferencefor LL males, whereas males did not discriminate between LLand LR females. On the individual level, we interpret the sexdifference in choosiness by the lower costs from mating withthe wrong species (LR) and the higher benefits from matingwith large individuals in males than in females. In "normal"species, male preference for large (i.e. more fecund) femalesis advantageous, but in this system such a choice can resultin mating with the larger LR females. With respect to the structureand dynamics of mixed populations, we discuss that the observed female preference is consistent with the higher mating successof LL males found in nature. Hence, mate female choice is astrong candidate for a mechanism promoting coexistence of thesperm-dependent hybrid and its sexual host. This confirms predictionsfrom previous theoretical models.  相似文献   

19.
The mathematical model presented here aims to elucidate the essential mechanisms of coexistence of species, especially those of closely related forms, as a result of competition in the same environment. It describes a system where the fate of the competitors or mutants is observed at the initial stage of evolution. The model encompasses both the external variables and the internal state of the competitors, which differ only in one of the metabolic rate constants. Results of simulations, even with the simplified form of the model, show that stable coexistence of closely related forms in a uniform environment is possible. In addition, the model allows the analysis of the limitations on the level of differences and similarities among the competitors for achieving a state of coexistence. The essential mechanisms for the coexistence of closely related competitors are proposed to be the involvement of the metabolic network in allowing the same growth rate of competitors which have different internal states, and the interplay between the internal states of the competitors and the external variables of their environment.  相似文献   

20.
Thispaperstudiestheglobaldynamicsofcompetitioninchemostatinwhichtwopopulationsofmicrooganismscompeteexploitativelyforasingle,essential,nonreproducing,growth-limitingsubstrateandthereisadirectinterferencebetweencompetitors.Inordertounderstandthedifferencesintheeffectsofintraspecificandinterspecificinterference,thebothcasesareconsideredrespectively.Keywords:##4Populationdynamicsecology;;chemostat;;competition;;interference;;interspecific;;intraspecific;;principalofcompetitiveexclusion  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号