首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shewanella oneidensis MR-1 is a metal reducer that uses a large number of electron acceptors including thiosulfate, polysulfide and sulfite. The enzyme required for thiosulfate and polysulfide respiration has been recently identified, but the mechanisms of sulfite reduction remained unexplored. Analysis of MR-1 cultures grown anaerobically with sulfite suggested that the dissimilatory sulfite reductase catalyses six-electron reduction of sulfite to sulfide. Reduction of sulfite required menaquinones but was independent of the intermediate electron carrier CymA. Furthermore, the terminal sulfite reductase, SirA, was identified as an octahaem c cytochrome with an atypical haem binding site. The sulfite reductase of S. oneidensis MR-1 does not appear to be a sirohaem enzyme, but represents a new class of sulfite reductases. The gene that encodes SirA is located within a 10-gene locus that is predicted to encode a component of a specialized haem lyase, a menaquinone oxidase and copper transport proteins. This locus was identified in the genomes of several Shewanella species and appears to be linked to the ability of these organisms to reduce sulfite under anaerobic conditions.  相似文献   

2.
Shewanella oneidensis strain MR-1 is well known for its respiratory versatility, yet little is understood about how it regulates genes involved in anaerobic respiration. The Arc two-component system plays an important role in this process in Escherichia coli; therefore, we determined its function in S. oneidensis. arcA from S. oneidensis complements an E. coli arcA mutant, but the Arc regulon in S. oneidensis constitutes a different suite of genes. For example, one of the strongest ArcA-regulated gene clusters in E. coli, sdh, is not regulated by the Arc system in S. oneidensis, and the cyd locus, which is induced by ArcA in E. coli under microaerobic conditions, is repressed by ArcA in S. oneidensis under anaerobic conditions. One locus that we identified as being potentially regulated by ArcA in S. oneidensis contains genes predicted to encode subunits of a dimethyl sulphoxide (DMSO) reductase. We demonstrate that these genes encode a functional DMSO reductase, and that an arcA mutant cannot fully induce their expression and is defective in growing on DMSO under anaerobic conditions. While S. oneidensis lacks a highly conserved full-length ArcB homologue, ArcA is partially activated by a small protein homologous to the histidine phosphotransfer domain of ArcB from E. coli, HptA. This protein alone is unable to compensate for the lack of arcB in E. coli, indicating that another protein is required in addition to HptA to activate ArcA in S. oneidensis.  相似文献   

3.
Escherichia coli genes required for cytochrome c maturation.   总被引:9,自引:4,他引:5       下载免费PDF全文
The so-called aeg-46.5 region of Escherichia coli contains genes whose expression is induced under anaerobic growth conditions in the presence of nitrate or nitrite as the terminal electron acceptor. In this work, we have examined more closely several genes of this cluster, here designated ccmABCDEFGH, that are homologous to two separate Bradyrhizobium japonicum gene clusters required for the biogenesis of c-type cytochromes. A deletion mutant of E. coli which lacked all of these genes was constructed. Maturation of indigenous c-type cytochromes synthesized under anaerobic respiratory conditions, with nitrite, nitrate, or trimethylamine N-oxide as the electron acceptor, was found to be defective in the mutant. The biogenesis of foreign cytochromes, such as the soluble B. japonicum cytochrome c550 and the membrane-bound Bacillus subtilis cytochrome c550, was also investigated. None of these cytochromes was synthesized in its mature form when expressed in the mutant, as opposed to the situation in the wild type. The results suggest that the E. coli ccm gene cluster present in the aeg-46.5 region is required for a general pathway involved in cytochrome c maturation.  相似文献   

4.
Through pattern matching of the cytochrome c heme-binding site (CXXCH) against the genome sequence of Shewanella oneidensis MR-1, we identified 42 possible cytochrome c genes (27 of which should be soluble) out of a total of 4758. However, we found only six soluble cytochromes c in extracts of S. oneidensis grown under several different conditions: (1) a small tetraheme cytochrome c, (2) a tetraheme flavocytochrome c-fumarate reductase, (3) a diheme cytochrome c4, (4) a monoheme cytochrome c5, (5) a monoheme cytochrome c', and (6) a diheme bacterial cytochrome c peroxidase. These cytochromes were identified either through N-terminal or complete amino acid sequence determination combined with mass spectroscopy. All six cytochromes were about 10-fold more abundant when cells were grown at low than at high aeration, whereas the flavocytochrome c-fumarate reductase was specifically induced by anaerobic growth on fumarate. When adjusted for the different heme content, the monoheme cytochrome c5 is as abundant as are the small tetraheme cytochrome and the tetraheme fumarate reductase. Published results on regulation of cytochromes from DNA microarrays and 2D-PAGE differ somewhat from our results, emphasizing the importance of multifaceted analyses in proteomics.  相似文献   

5.
Gluconacetobacter diazotrophicus is an endophyte of sugarcane frequently found in plants grown in agricultural areas where nitrogen fertilizer input is low. Recent results from this laboratory, using mutant strains of G. diazotrophicus unable to fix nitrogen, suggested that there are two beneficial effects of G. diazotrophicus on sugarcane growth: one dependent and one not dependent on nitrogen fixation. A plant growth-promoting substance, such as indole-3-acetic acid (IAA), known to be produced by G. diazotrophicus, could be a nitrogen fixation-independent factor. One strain, MAd10, isolated by screening a library of Tn5 mutants, released only approximately 6% of the amount of IAA excreted by the parent strain in liquid culture. The mutation causing the IAA(-) phenotype was not linked to Tn5. A pLAFR3 cosmid clone that complemented the IAA deficiency was isolated. Sequence analysis of a complementing subclone indicated the presence of genes involved in cytochrome c biogenesis (ccm, for cytochrome c maturation). The G. diazotrophicus ccm operon was sequenced; the individual ccm gene products were 37 to 52% identical to ccm gene products of Escherichia coli and equivalent cyc genes of Bradyrhizobium japonicum. Although several ccm mutant phenotypes have been described in the literature, there are no reports of ccm gene products being involved in IAA production. Spectral analysis, heme-associated peroxidase activities, and respiratory activities of the cell membranes revealed that the ccm genes of G. diazotrophicus are involved in cytochrome c biogenesis.  相似文献   

6.
7.
8.
Vibrio cholerae lives in different habitats, varying from aquatic ecosystems to the human intestinal tract. The organism has acquired a set of electron transport pathways for aerobic and anaerobic respiration that enable adaptation to the various environmental conditions. We have inactivated the V. cholerae ccmE gene, which is required for cytochrome c biogenesis. The resulting strain is deficient of all c-type cytochromes and allows us to characterize the physiological role of these proteins. Under aerobic conditions in rich medium, V. cholerae produces at least six c-type cytochromes, none of which is required for growth. Wild-type V. cholerae produces active fumarate reductase, trimethylamine N-oxide reductase, cbb3 oxidase, and nitrate reductase, of which only the fumarate reductase does not require maturation of c-type cytochromes. The reduction of nitrate in the medium resulted in the accumulation of nitrite, which is toxic for the cells. This suggests that V. cholerae is able to scavenge nitrate from the environment only in the presence of other nitrite-reducing organisms. The phenotypes of cytochrome c-deficient V. cholerae were used in a transposon mutagenesis screening to search for additional genes required for cytochrome c maturation. Over 55,000 mutants were analyzed for nitrate reductase and cbb3 oxidase activity. No transposon insertions other than those within the ccm genes for cytochrome c maturation and the dsbD gene, which encodes a disulphide bond reductase, were found. In addition, the role of a novel CcdA-like protein in cbb3 oxidase assembly is discussed.  相似文献   

9.
The ' aeg46.5  ' operon was originally detected as an 'anaerobically expressed gene' located at minute 46.5 on the Escherichia coli linkage map. Subsequent results from the E. coli Genome Sequencing Project revealed that the ' aeg46.5  ' promoter was located in the centisome 49 (minute 47) region. Downstream from this promoter are 15 genes, seven of which are predicted to encode a periplasmic nitrate reductase and eight encode proteins homologous to proteins essential for cytochrome c assembly in other bacteria. All of these genes, together with the ' aeg46.5  ' promoter, have been subcloned on a 20 kb Eco RI fragment from Kohara phage 19D1. Evidence is presented that, as predicted, the region includes structural genes for two c -type cytochromes of mass 16 kDa and 24 kDa, which are transcribed from the previously described ' aeg46.5  ' promoter, and that the first seven genes encode a functional nitrate reductase. We, therefore, propose that they should be designated nap (nitrate reductase in the periplasm) genes. Plasmids encoding the entire 20 kb region, or only the downstream eight genes, complemented five mutations resulting in total absence of all five known c -type cytochromes in E. coli , providing biochemical evidence that these are ccm (for cytochrome c maturation) genes. The ccm region was transcribed both from the FNR-dependent, NarL- and NarP-regulated nap promoter (formerly the ' aeg46.5  ' promoter) and from constitutive or weakly regulated promoters apparently located within the downstream nap and ccm genes.  相似文献   

10.
Shewanella oneidensis MR-1 has the metabolic capacity to grow anaerobically using Fe(III) as a terminal electron acceptor. Growth under these conditions results in the de novo synthesis of a number of periplasmic c-type cytochromes, many of which are multiheme in nature and are thought to be involved in the Fe(III) respiratory process. To begin a biochemical study of these complex cytochromes, the mtrA gene that encodes an approximate 32-kDa periplasmic decaheme cytochrome has been heterologously expressed in Escherichia coli. Co-expression of mtrA with a plasmid that contains cytochrome c maturation genes leads to the assembly of a correctly targeted holoprotein, which covalently binds ten hemes. The recombinant MtrA protein has been characterized by magnetic circular dichroism, which shows that all ten hemes have bis-histidine axial ligation. EPR spectroscopy detected only eight of these hemes, all of which are low spin and provides evidence for a spin-coupled pair of hemes in the oxidized state. Redox titrations of MtrA have been carried out with optical- and EPR-monitored methods, and the hemes are shown to reduce over the potential range -100 to -400 mV. In intact cells of E. coli, MtrA is shown to obtain electrons from the host electron transport chain and pass these onto host oxidoreductases or a range of soluble Fe(III) species. This demonstrates the promiscuous nature of this decaheme cytochrome and its potential to serve as a soluble Fe(III) reductase in intact cells.  相似文献   

11.
The Gram-negative bacterium Shewanella oneidensis MR-1 shows a remarkably versatile anaerobic respiratory metabolism. One of its hallmarks is its ability to grow and survive through the reduction of metallic compounds. Among other proteins, outer membrane decaheme cytochromes c OmcA and OmcB have been identified as key players in metal reduction. In fact, both of these cytochromes have been proposed to be terminal Fe(III) and Mn(IV) reductases, although their role in the reduction of other metals is less well understood. To obtain more insight into this, we constructed and analyzed omcA, omcB and omcA/omcB insertion mutants of S. oneidensis MR-1. Anaerobic growth on Fe(III), V(V), Se(VI) and U(VI) revealed a requirement for both OmcA and OmcB in Fe(III) reduction, a redundant function in V(V) reduction, and no apparent involvement in Se(VI) and U(VI) reduction. Growth of the omcB(-) mutant on Fe(III) was more affected than growth of the omcA(-) mutant, suggesting OmcB to be the principal Fe(III) reductase. This result was corroborated through the examination of whole cell kinetics of OmcA- and OmcB-dependent Fe(III)-nitrilotriacetic acid reduction, showing that OmcB is approximately 11.5 and approximately 6.3 times faster than OmcA at saturating and low nonsaturating concentrations of Fe(III)-nitrilotriacetic acid, respectively, whereas the omcA(-) omcB(-) double mutant was devoid of Fe(III)-nitrilotriacetic acid reduction activity. These experiments reveal, for the first time, that OmcA and OmcB are the sole terminal Fe(III) reductases present in S. oneidensis MR-1. Kinetic inhibition experiments further revealed vanadate (V(2)O(5)) to be a competitive and mixed-type inhibitor of OmcA and OmcB, respectively, showing similar affinities relative to Fe(III)-nitrilotriacetic acid. Neither sodium selenate nor uranyl acetate were found to inhibit OmcA- and OmcB-dependent Fe(III)-nitrilotriacetic acid reduction. Taken together with our growth experiments, this suggests that proteins other than OmcA and OmcB play key roles in anaerobic Se(VI) and U(VI) respiration.  相似文献   

12.
13.
Shewanella oneidensis MR-1 is a facultatively anaerobic bacterium capable of using soluble and insoluble forms of manganese [Mn(III/IV)] and iron [Fe(III)] as terminal electron acceptors during anaerobic respiration. To assess the structural association of two outer membrane-associated c-type decaheme cytochromes (i.e., OmcA [SO1779] and MtrC [SO1778]) and their ability to reduce soluble Fe(III)-nitrilotriacetic acid (NTA), we expressed these proteins with a C-terminal tag in wild-type S. oneidensis and a mutant deficient in these genes (i.e., Delta omcA mtrC). Endogenous MtrC copurified with tagged OmcA in wild-type Shewanella, suggesting a direct association. To further evaluate their possible interaction, both proteins were purified to near homogeneity following the independent expression of OmcA and MtrC in the Delta omcA mtrC mutant. Each purified cytochrome was confirmed to contain 10 hemes and exhibited Fe(III)-NTA reductase activity. To measure binding, MtrC was labeled with the multiuse affinity probe 4',5'-bis(1,3,2-dithioarsolan-2-yl)fluorescein (1,2-ethanedithiol)2, which specifically associates with a tetracysteine motif engineered at the C terminus of MtrC. Upon titration with OmcA, there was a marked increase in fluorescence polarization indicating the formation of a high-affinity protein complex (Kd < 500 nM) between MtrC and OmcA whose binding was sensitive to changes in ionic strength. Following association, the OmcA-MtrC complex was observed to have enhanced Fe(III)-NTA reductase specific activity relative to either protein alone, demonstrating that OmcA and MtrC can interact directly with each other to form a stable complex that is consistent with their role in the electron transport pathway of S. oneidensis MR-1.  相似文献   

14.
Anaerobic cultures of Shewanella oneidensis MR-1 grown with nitrate as the sole electron acceptor exhibited sequential reduction of nitrate to nitrite and then to ammonium. Little dinitrogen and nitrous oxide were detected, and no growth occurred on nitrous oxide. A mutant with the napA gene encoding periplasmic nitrate reductase deleted could not respire or assimilate nitrate and did not express nitrate reductase activity, confirming that the NapA enzyme is the sole nitrate reductase. Hence, S. oneidensis MR-1 conducts respiratory nitrate ammonification, also termed dissimilatory nitrate reduction to ammonium, but not respiratory denitrification.  相似文献   

15.
Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron flow from cytoplasmic oxidative reactions to electrodes. Reversing this electron flow to drive microbial reductive metabolism offers a possible route for electrosynthesis of high value fuels and chemicals. We examined electron flow from electrodes into Shewanella to determine the feasibility of this process, the molecular components of reductive electron flow, and what driving forces were required. Addition of fumarate to a film of S. oneidensis adhering to a graphite electrode poised at -0.36 V versus standard hydrogen electrode (SHE) immediately led to electron uptake, while a mutant lacking the periplasmic fumarate reductase FccA was unable to utilize electrodes for fumarate reduction. Deletion of the gene encoding the outer membrane cytochrome-anchoring protein MtrB eliminated 88% of fumarate reduction. A mutant lacking the periplasmic cytochrome MtrA demonstrated more severe defects. Surprisingly, disruption of menC, which prevents menaquinone biosynthesis, eliminated 85% of electron flux. Deletion of the gene encoding the quinone-linked cytochrome CymA had a similar negative effect, which showed that electrons primarily flowed from outer membrane cytochromes into the quinone pool, and back to periplasmic FccA. Soluble redox mediators only partially restored electron transfer in mutants, suggesting that soluble shuttles could not replace periplasmic protein-protein interactions. This work demonstrates that the Mtr pathway can power reductive reactions, shows this conduit is functionally reversible, and provides new evidence for distinct CymA:MtrA and CymA:FccA respiratory units.  相似文献   

16.
17.
18.
Cytochrome c(3) from Desulfovibrio vulgaris Miyazaki F was successfully expressed in the facultative aerobe Shewanella oneidensis MR-1 under anaerobic, microaerophilic, and aerobic conditions, with yields of 0.3 to 0.5 mg of cytochrome/g of cells. A derivative of the broad-host-range plasmid pRK415 containing the cytochrome c(3) gene from D. vulgaris Miyazaki F was used for transformation of S. oneidensis MR-1, resulting in the production of protein product that was indistinguishable from that produced by D. vulgaris Miyazaki F, except for the presence of one extra alanine residue at the N terminus.  相似文献   

19.
The mechanisms underlying the use of insoluble electron acceptors by metal-reducing bacteria, such as Shewanella oneidensis MR-1, are currently under intensive study. Current models for shuttling electrons across the outer membrane (OM) of MR-1 include roles for OM cytochromes and the possible excretion of a redox shuttle. While MR-1 is able to release a substance that restores the ability of a menaquinone (MK)-negative mutant, CMA-1, to reduce the humic acid analog anthraquinone-2,6-disulfonate (AQDS), cross-feeding experiments conducted here showed that the substance released by MR-1 restores the growth of CMA-1 on several soluble electron acceptors. Various strains derived from MR-1 also release this substance; these include mutants lacking the OM cytochromes OmcA and OmcB and the OM protein MtrB. Even though strains lacking OmcB and MtrB cannot reduce Fe(III) or AQDS, they still release a substance that restores the ability of CMA-1 to use MK-dependent electron acceptors, including AQDS and Fe(III). Quinone analysis showed that this released substance restores MK synthesis in CMA-1. This ability to restore MK synthesis in CMA-1 explains the cross-feeding results and challenges the previous hypothesis that this substance represents a redox shuttle that facilitates metal respiration.  相似文献   

20.
Wolinella succinogenes can grow by anaerobic respiration with nitrate or nitrite using formate as electron donor. Two forms of nitrite reductase were isolated from the membrane fraction of W. succinogenes. One form consisted of a 58 kDa polypeptide (NrfA) that was identical to the periplasmic nitrite reductase. The other form consisted of NrfA and a 22 kDa polypeptide (NrfH). Both forms catalysed nitrite reduction by reduced benzyl viologen, but only the dimeric form catalysed nitrite reduction by dimethylnaphthoquinol. Liposomes containing heterodimeric nitrite reductase, formate dehydrogenase and menaquinone catalysed the electron transport from formate to nitrite; this was coupled to the generation of an electrochemical proton potential (positive outside) across the liposomal membrane. It is concluded that the electron transfer from menaquinol to the catalytic subunit (NrfA) of W. succinogenes nitrite reductase is mediated by NrfH. The structural genes nrfA and nrfH were identified in an apparent operon (nrfHAIJ) with two additional genes. The gene nrfA encodes the precursor of NrfA carrying an N-terminal signal peptide (22 residues). NrfA (485 residues) is predicted to be a hydrophilic protein that is similar to the NrfA proteins of Sulfurospirillum deleyianum and of Escherichia coli. NrfH (177 residues) is predicted to be a membrane-bound tetrahaem cytochrome c belonging to the NapC/NirT family. The products of nrfI and nrfJ resemble proteins involved in cytochrome c biogenesis. The C-terminal third of NrfI (902 amino acid residues) is similar to CcsA proteins from Gram-positive bacteria, cyanobacteria and chloroplasts. The residual N-terminal part of NrfI resembles Ccs1 proteins. The deduced NrfJ protein resembles the thioredoxin-like proteins (ResA) of Helicobacter pylori and of Bacillus subtilis, but lacks the common motif CxxC of ResA. The properties of three deletion mutants of W. succinogenes (DeltanrfJ, DeltanrfIJ and DeltanrfAIJ) were studied. Mutants DeltanrfAIJ and DeltanrfIJ did not grow with nitrite as terminal electron acceptor or with nitrate in the absence of NH4+ and lacked nitrite reductase activity, whereas mutant DeltanrfJ showed wild-type properties. The NrfA protein formed by mutant DeltanrfIJ seemed to lack part of the haem C, suggesting that NrfI is involved in NrfA maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号