首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 30-residue nitroxide scan encompassing a helical hairpin and an extended loop in soluble annexin 12 (helices D and E in repeat 2; residues 134-163) has been analyzed in terms of nitroxide side chain mobility and accessibility to collision with paramagnetic reagents (Pi). Values of Pi for both O(2) and a Ni(II) metal complex (NiEDDA) are remarkably well correlated with the fractional solvent accessibility of the native side chains at the corresponding positions computed from the known crystal structure. This result demonstrates the utility of Pi as an experimental measure of side chain accessibility in solution, as well as the lack of structural perturbation due to the presence of the nitroxide side chain. The pattern of side chain mobility is also in excellent agreement with predictions from the crystal structure. The results presented here extend the correlations between mobility and structure described in earlier work on other helical proteins, and suggest their generality. The periodic dependence of Pi and mobility along the sequence of annexin 12 reveals the helical segments and their orientation in the fold, as expected for a nonperturbing nitroxide side chain. However, these data do not distinguish the helix-loop-helix motif from a continuous helix, because immobilized side chains in the short loop sequence maintain the periodicity. As shown here, the ratio of Pi values for O(2) and NiEDDA clearly delineates the loop region, due to size exclusion effects between the two reagents. A new feature evident in a nitroxide scan through multiple secondary elements is a modulation of the basic Pi and mobility patterns along the sequence, apparently due to differences in helix packing and backbone motion. Thus, in the short helix D, residues are consistently more mobile and accessible throughout the sequence compared to the residues in the longer, less-solvated and more ordered helix E.  相似文献   

2.
Wang JY  Lee HM  Ahmad S 《Proteins》2005,61(3):481-491
A multiple linear regression method was applied to predict real values of solvent accessibility from the sequence and evolutionary information. This method allowed us to obtain coefficients of regression and correlation between the occurrence of an amino-acid residue at a specific target and its sequence neighbor positions on the one hand, and the solvent accessibility of that residue on the other. Our linear regression model based on sequence information and evolutionary models was found to predict residue accessibility with 18.9% and 16.2% mean absolute error respectively, which is better than or comparable to the best available methods. A correlation matrix for several neighbor positions to examine the role of evolutionary information at these positions has been developed and analyzed. As expected, the effective frequency of hydrophobic residues at target positions shows a strong negative correlation with solvent accessibility, whereas the reverse is true for charged and polar residues. The correlation of solvent accessibility with effective frequencies at neighboring positions falls abruptly with distance from target residues. Longer protein chains have been found to be more accurately predicted than their smaller counterparts.  相似文献   

3.
We analyzed the total, hydrophobic, and hydrophilic accessible surfaces (ASAs) of residues from a nonredundant bank of 587 3D structure proteins. In an extended fold, residues are classified into three families with respect to their hydrophobicity balance. As expected, residues lose part of their solvent-accessible surface with folding but the three groups remain. The decrease of accessibility is more pronounced for hydrophobic than hydrophilic residues. Amazingly, Lysine is the residue with the largest hydrophobic accessible surface in folded structures. Our analysis points out a clear difference between the mean (other studies) and median (this study) ASA values of hydrophobic residues, which should be taken into consideration for future investigations on a protein-accessible surface, in order to improve predictions requiring ASA values. The different secondary structures correspond to different accessibility of residues. Random coils, turns, and beta-structures (outside beta-sheets) are the most accessible folds, with an average of 30% accessibility. The helical residues are about 20% accessible, and the difference between the hydrophobic and the hydrophilic residues illustrates the amphipathy of many helices. Residues from beta-sheets are the most inaccessible to solvent (10% accessible). Hence, beta-sheets are the most appropriate structures to shield the hydrophobic parts of residues from water. We also show that there is an equal balance between the hydrophobic and the hydrophilic accessible surfaces of the 3D protein surfaces irrespective of the protein size. This results in a patchwork surface of hydrophobic and hydrophilic areas, which could be important for protein interactions and/or activity.  相似文献   

4.
G protein-coupled receptors (GPCRs) are members of a superfamily of cell surface signaling proteins that play critical roles in many physiological functions; malfunction of these proteins is associated with multiple diseases. Understanding the structure–function relationships of these proteins is important, therefore, for GPCR-based drug discovery. The yeast Saccharomyces cerevisiae tridecapeptide pheromone α-factor receptor Ste2p has been studied as a model to explore the structure–function relationships of this important class of cell surface receptors. Although transmembrane domains of GPCRs have been examined extensively, the extracellular N-terminus and loop regions have received less attention. We have used substituted cysteine accessibility method to probe the solvent accessibility of single cysteine residues engineered to replace residues Gly20 through Gly33 of the N-terminus of Ste2p. Unexpectedly, our analyses revealed that the residues Ser22, Ile24, Tyr26, and Ser28 in the N-terminus were solvent inaccessible, whereas all other residues of the targeted region were solvent accessible. The periodicity of accessibility from residues Ser22–Ser28 is indicative of an underlying structure consistent with a β-strand that was predicted computationally in this region. Moreover, a number of these Cys-substituted Ste2p receptors (G20C, S22C, I24C, Y26C, S28C and Y30C) were found to form increased dimers compared to the Cys-less Ste2p. Based on these data, we propose that part of the N-terminus of Ste2p is structured and that this structure forms a dimer interface for Ste2p molecules. Dimerization mediated by the N-terminus was affected by ligand binding, indicating an unanticipated conformational change in the N-terminus upon receptor activation.  相似文献   

5.
Wang JY  Lee HM  Ahmad S 《Proteins》2007,68(1):82-91
A number of methods for predicting levels of solvent accessibility or accessible surface area (ASA) of amino acid residues in proteins have been developed. These methods either predict regularly spaced states of relative solvent accessibility or an analogue real value indicating relative solvent accessibility. While discrete states of exposure can be easily obtained by post prediction assignment of thresholds to the predicted or computed real values of ASA, the reverse, that is, obtaining a real value from quantized states of predicted ASA, is not straightforward as a two-state prediction in such cases would give a large real valued errors. However, prediction of ASA into larger number of ASA states and then finding a corresponding scheme for real value prediction may be helpful in integrating the two approaches of ASA prediction. We report a novel method of obtaining numerical real values of solvent accessibility, using accumulation cutoff set and support vector machine. This so-called SVM-Cabins method first predicts discrete states of ASA of amino acid residues from their evolutionary profile and then maps the predicted states onto a real valued linear space by simple algebraic methods. Resulting performance of such a rigorous approach using 13-state ASA prediction is at least comparable with the best methods of ASA prediction reported so far. The mean absolute error in this method reaches the best performance of 15.1% on the tested data set of 502 proteins with a coefficient of correlation equal to 0.66. Since, the method starts with the prediction of discrete states of ASA and leads to real value predictions, performance of prediction in binary states and real values are simultaneously optimized.  相似文献   

6.
The mechanosensitive channel from Escherichia coli (Eco-MscL) responds to membrane lateral tension by opening a large, water-filled pore that serves as an osmotic safety valve. In an attempt to understand the structural dynamics of MscL in the closed state and under physiological conditions, we have performed a systematic site-directed spin labeling study of this channel reconstituted in a membrane bilayer. Structural information was derived from an analysis of probe mobility, residue accessibility to O(2) or NiEdda and overall intersubunit proximity. For the majority of the residues studied, mobility and accessibility data showed a remarkable agreement with the Mycobacterium tuberculosis crystal structure, clearly identifying residues facing the large water-filled vestibule at the extracellular face of the molecule, the narrowest point along the permeation pathway (residues 21-26 of Eco-MscL), and the lipid-exposed residues in the peripheral transmembrane segments (TM2). Overall, the present dataset demonstrates that the transmembrane regions of the MscL crystal structure (obtained in detergent and at low pH) are, in general, an accurate representation of its structure in a membrane bilayer under physiological conditions. However, significant differences between the EPR data and the crystal structure were found toward the COOH-terminal end of TM2.  相似文献   

7.
Amino acid residue-specific reactivity in proteins is of great current interest in structural biology as it provides information about solvent accessibility and reactivity of the residue and, consequently, about protein structure and possible interactions. In the work presented tyrosine residues of three model proteins with known spatial structure are modified with two tyrosine-specific reagents: tetranitromethane and iodine. Modified proteins were specifically digested by proteases and the mass of resulting peptide fragments was determined using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Our results show that there are only small differences in the extent of tyrosine residues modification by tetranitromethane and iodine. However, data dealing with accessibility of reactive residues obtained by chemical modifications are not completely identical with those obtained by nuclear magnetic resonance and X-ray crystallography. These interesting discrepancies can be caused by local molecular dynamics and/or by specific chemical structure of the residues surrounding.  相似文献   

8.
G protein-coupled receptors (GPCRs) are members of a superfamily of cell surface signaling proteins that play critical roles in many physiological functions; malfunction of these proteins is associated with multiple diseases. Understanding the structure-function relationships of these proteins is important, therefore, for GPCR-based drug discovery. The yeast Saccharomyces cerevisiae tridecapeptide pheromone α-factor receptor Ste2p has been studied as a model to explore the structure-function relationships of this important class of cell surface receptors. Although transmembrane domains of GPCRs have been examined extensively, the extracellular N-terminus and loop regions have received less attention. We have used substituted cysteine accessibility method to probe the solvent accessibility of single cysteine residues engineered to replace residues Gly20 through Gly33 of the N-terminus of Ste2p. Unexpectedly, our analyses revealed that the residues Ser22, Ile24, Tyr26, and Ser28 in the N-terminus were solvent inaccessible, whereas all other residues of the targeted region were solvent accessible. The periodicity of accessibility from residues Ser22-Ser28 is indicative of an underlying structure consistent with a β-strand that was predicted computationally in this region. Moreover, a number of these Cys-substituted Ste2p receptors (G20C, S22C, I24C, Y26C, S28C and Y30C) were found to form increased dimers compared to the Cys-less Ste2p. Based on these data, we propose that part of the N-terminus of Ste2p is structured and that this structure forms a dimer interface for Ste2p molecules. Dimerization mediated by the N-terminus was affected by ligand binding, indicating an unanticipated conformational change in the N-terminus upon receptor activation.  相似文献   

9.
The assignment of the aromatic 1H n.m.r. resonances of the four tyrosine residues of bovine 2-zinc insulin is reported, based on double resonance techniques, use of Hahn spin echo pulse sequences and examination of specific derivatives nitrated at tyrosines A14 and A19 as well as des-(B26-B30)-insulin. Titration curves of the four tyrosine residues show that residues A14 and B16 have normal pK' values of 10.3-10.6 in solution, consistent with their accessibility to solvent in monomer and dimer in the crystal. Tyrosine residues A19 and B26 have pK' values of 11.4 and exhibit other features in their titration curves that are consistent with limited accessibility to solvent and a nonpolar environment. The meta protons of residues B16 and B26 both observe the titration of a nearby tyrosine residue, probably A19. Interpretation of the n.m.r. data obtained in solution is consistent with the crystallographic data for the monomer and dimer obtained on insulin crystals [Blundell, Dodson, Hodgkin & Mercola (1972) Adv. Protein Chem. 26, 279-402].  相似文献   

10.
Prediction of protein surface accessibility with information theory   总被引:8,自引:0,他引:8  
A new, simple method based on information theory is introduced to predict the solvent accessibility of amino acid residues in various states defined by their different thresholds. Prediction is achieved by the application of information obtained from a single amino acid position or pair-information for a window of seventeen amino acids around the desired residue. Results obtained by pairwise information values are better than results from single amino acids. This reinforces the effect of the local environment on the accessibility of amino acid residues. The prediction accuracy of this method in a jackknife test system for two and three states is better than 70 and 60 %, respectively. A comparison of the results with those reported by others involving the same data set also testifies to a better prediction accuracy in our case.  相似文献   

11.
The major protein from bovine seminal plasma, PDC-109 binds selectively to choline phospholipids on the sperm plasma membrane and plays a crucial role in priming spermatozoa for fertilization. The microenvironment and accessibility of tryptophans of PDC-109 in the native state, in the presence of phosphorylcholine (PrC) and phospholipid membranes as well as upon denaturation have been investigated by fluorescence approaches. Quenching of the protein intrinsic fluorescence by different quenchers decreased in the order: acrylamide>succinimide>Cs(+)>I(-). Ligand binding afforded considerable protection from quenching, with shielding efficiencies following the order: dimyristoylphosphatidylcholine (DMPC)>lysophosphatidylcholine (Lyso-PC)>PrC. This has been attributed to a partial penetration of the protein into the DMPC membranes and Lyso-PC micelles, as well as a further stabilization of the binding due to the interaction of PDC-109 with lipid acyl chains and the resulting tightening of the protein structure, leading to a decreased accessibility of the tryptophan residues. Red-edge excitation shift (REES) studies yielded REES values of 4 nm for both native and denatured PDC-109, whereas reduced and denatured protein gave a REES of only 0.5 nm, clearly indicating that the structural and dynamic features of the microenvironment around the tryptophan residues are retained even after denaturation, presumably due to the constraints imposed on the protein structure by disulfide bonds. Upon binding of PDC-109 to DMPC membranes and Lyso-PC micelles the REES values were reduced to 2.5 and 1.0 nm, respectively, which could be due to the penetration of some parts of the protein, especially the segment containing Trp-90 into the membrane interior, where the red-edge effects are considerably reduced.  相似文献   

12.
Analysis and prediction of the location of catalytic residues in enzymes   总被引:6,自引:0,他引:6  
The catalytic residues of an enzyme are defined as the amino acids directly involved in chemical catalysis. They mainly act as a general acid--base, electrophilic or nucleophilic catalyst or they polarize and stabilize the transition state. An analysis of the structural features of 36 catalytic residues in 17 enzymes of known structure and with defined mechanism is reported. Residues that bind metal ions (Zn2+ and Cu2+) are considered separately. The features examined are: residue type, location in secondary structure, separation between the residues, accessibility to solvent, intra-protein electrostatic interactions, mobility as evaluated from crystallographic temperature factors, polarity of the environment and the sequence conservation between homologous enzymes of residues that were sequentially or spatially close to the catalytic residue. In general the environment of catalytic residues is similar to that of polar side chains that have low accessibility to solvent. Two algorithms have been developed to identify probable catalytic residues. Scanning an alignment of homologous enzyme sequences for peaks of sequence conservation identifies 13 out of the 16 catalytic residues with 50 residues overpredicted. When the conservation of the spatially close residues is used instead, a different set of 13 residues are identified with 47 residues overpredicted. A combination of the two algorithms identifies 11 residues with 36 residues overpredicted.  相似文献   

13.
The mitochondrial citrate transport protein (CTP) has been investigated by mutating 28 consecutive residues within transmembrane domain III (TMDIII), one at a time, to cysteine. A cysteine-less CTP that retains wild-type functional properties, served as the starting template. The single Cys CTP mutants were abundantly expressed in Escherichia coli, isolated, and functionally reconstituted in a liposomal system. The accessibility of each single Cys mutant to two methanethiosulfonate reagents was evaluated by determining the rate constants for inhibition of CTP function. These rate constants varied by over five orders of magnitude. With two independent data sets we observed peaks and troughs in the rate constant data at identical amino acid positions and a periodicity of 4 was observed from residues 123-137. Based on the pattern of accessibility we conclude that residues 123-137 exist as an alpha-helix. Although less certain, a combination of the rate constant data and the specific activity data with the single Cys mutants suggests that the alpha-helical secondary structure may extend to residue 113. Furthermore, the rate constant data define water-accessible and water-inaccessible faces of the helix. We infer that the water-accessible face comprises a portion of the substrate translocation pathway through the CTP, whereas the water-inaccessible surface faces the lipid bilayer. Finally, based on a combination of the CTP inhibition rate constant data and the existence of significant sequence identity with a transmembrane segment within glycophorin A that forms a portion of its dimer interface, a model for a putative CTP TMDIII-TMDIII' dimer interface has been developed.  相似文献   

14.

Background  

Solvent accessibility (ASA) of amino acid residues is often transformed from absolute values of exposed surface area to their normalized relative values. This normalization is typically attained by assuming a highest exposure conformation based on extended state of that residue when it is surrounded by Ala or Gly on both sides i.e. Ala-X-Ala or Gly-X-Gly solvent exposed area. Exact sequence context, the folding state of the residues, and the actual environment of a folded protein, which do impose additional constraints on the highest possible (or highest observed) values of ASA, are currently ignored. Here, we analyze the statistics of these constraints and examine how the normalization of absolute ASA values using context-dependent Highest Observed ASA (HOA) instead of context-free extended state ASA (ESA) of residues can influence the performance of sequence-based prediction of solvent accessibility. Characterization of burial and exposed states of residues based on this normalization has also been shown to provide better enrichment of DNA-binding sites in exposed residues.  相似文献   

15.
Ahmad S  Gromiha MM  Sarai A 《Proteins》2003,50(4):629-635
The solvent accessibility of amino acid residues has been predicted in the past by classifying them into exposure states with varying thresholds. This classification provides a wide range of values for the accessible surface area (ASA) within which a residue may fall. Thus far, no attempt has been made to predict real values of ASA from the sequence information without a priori classification into exposure states. Here, we present a new method with which to predict real value ASAs for residues, based on neighborhood information. Our real value prediction neural network could estimate the ASA for four different nonhomologous, nonredundant data sets of varying size, with 18.0-19.5% mean absolute error, defined as per residue absolute difference between the predicted and experimental values of relative ASA. Correlation between the predicted and experimental values ranged from 0.47 to 0.50. It was observed that the ASA of a residue could be predicted within a 23.7% mean absolute error, even when no information about its neighbors is included. Prediction of real values answers the issue of arbitrary choice of ASA state thresholds, and carries more information than category prediction. Prediction error for each residue type strongly correlates with the variability in its experimental ASA values.  相似文献   

16.
Apolipoprotein A-I (apoA-I) is the major protein component of high density lipoproteins (HDL) and a critical element of cholesterol metabolism. To better elucidate the role of the apoA-I structure-function in cholesterol metabolism, the conformation of the apoA-I N terminus (residues 6-98) on nascent HDL was examined by electron paramagnetic resonance (EPR) spectroscopic analysis. A series of 93 apoA-I variants bearing single nitroxide spin label at positions 6-98 was reconstituted onto 9.6-nm HDL particles (rHDL). These particles were subjected to EPR spectral analysis, measuring regional flexibility and side chain solvent accessibility. Secondary structure was elucidated from side-chain mobility and molecular accessibility, wherein two major α-helical domains were localized to residues 6-34 and 50-98. We identified an unstructured segment (residues 35-39) and a β-strand (residues 40-49) between the two helices. Residues 14, 19, 34, 37, 41, and 58 were examined by EPR on 7.8, 8.4, and 9.6 nm rHDL to assess the effect of particle size on the N-terminal structure. Residues 14, 19, and 58 showed no significant rHDL size-dependent spectral or accessibility differences, whereas residues 34, 37, and 41 displayed moderate spectral changes along with substantial rHDL size-dependent differences in molecular accessibility. We have elucidated the secondary structure of the N-terminal domain of apoA-I on 9.6 nm rHDL (residues 6-98) and identified residues in this region that are affected by particle size. We conclude that the inter-helical segment (residues 35-49) plays a role in the adaptation of apoA-I to the particle size of HDL.  相似文献   

17.
K Mandal  B Chakrabarti 《Biochemistry》1988,27(12):4564-4571
The solute perturbation techniques of fluorescence of tryptophan (Trp) and dye-labeled thiol groups of cysteine as well as phosphorescence of tyrosine (Tyr) were utilized to obtain information on the relative solvent exposure and accessibility of these residues in gamma-crystallins. Both acrylamide and iodide quenchers were used to evaluate the quenching parameters in terms of accessibility and charge characteristics of the proteins. Stern-Volmer plots reveal the presence of more than one class of Trp residues in gamma-III and gamma-IV, and these residues in gamma-II are least accessible compared to the other two. Both steady-state and lifetime quenching studies of the dye-labeled fluorescence indicate that distinct differences also exist among these crystallins in cysteine (Cys) accessibilities. All three proteins, gamma-II, gamma-III, and gamma-IV, show two distinct lifetime components of the dye-labeled Cys residues. Both components of gamma-II undergo dynamic quenching, whereas only the major component of the other two crystallins is affected by the quenchers. Addition of acrylamide causes a decrease in Tyr phosphorescence of gamma-III and gamma-IV, but no change in the emission of gamma-II. The decrease is attributed to the formation of a nonemittive ground-state complex between the acrylamide and Tyr of the proteins; the association constant, Ka, calculated from the emission data, has been considered as a measure of Tyr accessibility. Ka values indicate that Tyr residues in gamma-III are most exposed and accessible compared to those in the other two proteins. Results of quenching by iodide ion reveal significant differences in the surface charge of the proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Extensive studies in our laboratory using different ribonucleases resulted in valuable data on the topography of the E.coli 16S ribosomal RNA within the native 30S subunit, within partially unfolded 30S subunits, in the free state, and in association with individual ribosomal proteins. Such studies have precise details on the accessibility of certain residues and delineated highly accessible RNA regions. Furthermore, they provided evidence that the 16S rRNA is organized in its subunit into four distinct domains. A secondary structure model of the E.coli 16S rRNA has been derived from these topographical data. Additional information from comparative sequence analyses of the small ribosomal subunit RNAs from other species sequenced so far has been used.  相似文献   

19.
We have studied the accessibility of 5'- 32P labeled oocyte and somatic 5S rRNAs from the fish Misgurnus fossilis L. to S1, T1 and cobra venom nucleases and have found that the cleavage sites of 5S rRNAs closely related in primary structures differ in these molecules. The data of nuclease hydrolyses revealed the existence of two conformers corresponding to renatured and partially denatured somatic 5S rRNA and capable of mutual interconversions. The exposed cytosine residues were located in oocyte and somatic 5S rRNAs converted into uridine ones by sodium bisulfite treatment. The data have been used to construct the secondary structure models of somatic and oocyte 5S rRNAs by means of specially devised computer program. These models differ in their 5'-halves which contain all the nucleotide substitutions in the primary structure, all differences in location of the exposed cytosine residues, and finally, in the cleavage pattern by the nucleases used.  相似文献   

20.
Amino acid-specific covalent labeling is well suited to probe protein structure and macromolecular interactions, especially for macromolecules and their complexes that are difficult to examine by alternative means, due to size, complexity, or instability. Here we present a detailed account of carbodiimide-based covalent labeling (with GEE tagging) applied to a glycosylated monoclonal antibody therapeutic, which represents an important class of biologic drugs. Characterization of such proteins and their antigen complexes is essential to development of new biologic-based medicines. In this study, the experiments were optimized to preserve the structural integrity of the protein, and experimental conditions were varied and replicated to establish the reproducibility and precision of the technique. Homology-based models were generated and used to compare the solvent accessibility of the labeled residues, which include D, E, and the C-terminus, against the experimental surface accessibility data in order to understand the accuracy of the approach in providing an unbiased assessment of structure. Data from the protein were also compared to reactivity measures of several model peptides to explain sequence or structure-based variations in reactivity. The results highlight several advantages of this approach. These include: the ease of use at the bench top, the linearity of the dose response plots at high levels of labeling (indicating that the label does not significantly perturb the structure of the protein), the high reproducibility of replicate experiments (<2 % variation in modification extent), the similar reactivity of the 3 target probe residues (as suggested by analysis of model peptides), and the overall positive and significant correlation of reactivity and solvent accessible surface area (the latter values predicted by the homology modeling). Attenuation of reactivity, in otherwise solvent accessible probes, is documented as arising from the effects of positive charge or bond formation between adjacent amine and carboxyl groups, the latter accompanied by observed water loss. The results are also compared with data from hydroxyl radical-mediated oxidative footprinting on the same protein, showing that complementary information is gained from the 2 approaches, although the number of target residues in carbodiimide/GEE labeling is fewer. Overall, this approach is an accurate and precise method for assessing protein structure of biologic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号