首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study explores the efficiency of Talaromyces thermophilus β-xylosidase, in the production of xylose and xylooligosaccharides. The β-xylosidase was immobilized by different methods namely ionic binding, entrapment and covalent coupling and using various carriers. Chitosan, pre-treated with glutaraldehyde, was selected as the best support material for β-xylosidase immobilization; it gave the highest immobilization and activity yields (94%, 87%, respectively) of initial activity, and also provided the highest stability, retaining 94% of its initial activity even after being recycled 25 times. Shifts in the optimal temperature and pH were observed for the immobilized β-xylosidase when compared to the free enzyme. The maximal activity obtained for the immobilized enzyme was achieved at pH 8.0 and 53 °C, whereas that for the free enzyme was obtained at pH 7.0 and 50 °C. The immobilized enzyme was more thermostable than the free β-xylosidase. We observed an increase of the Km values of the free enzyme from 2.37 to 3.42 mM at the immobilized state. Native and immobilized β-xylosidase were found to be stimulated by Ca2+, Mn2+ and Co2+ and to be inhibited by Zn2+, Cu2+, Hg2+, Fe2+, EDTA and SDS. Immobilized enzyme was found to catalyze the reverse hydrolysis reaction, forming xylooligosaccharides in the presence of a high concentration of xylose. In order to examine the synergistic action of xylanase and β-xylosidase of T. thermophilus, these two enzymes were co-immobilized on chitosan. A continuous hydrolysis of 3% Oat spelt xylan at 50 °C was performed and better hydrolysis yields and higher amount of xylose was obtained.  相似文献   

2.
Biodegradation of toxic amides by immobilized Rhodococcus rhodochrous NHB-2 has been studied to generate data for future development of reactors for the treatment of simulated wastewater containing various toxic amides. The whole resting cells were immobilized in different matrices like agar, polyacrylamide and alginate. Agar gel beads were selected for the treatment of simulated wastewater containing 100mM each acetamide, propionamide, and 10mM of acrylamide and packed in a highly compact five-stage plug flow reactor. The immobilized bacterium worked well in a broad pH range from 5 to 10, with an optimum at 8.7. The apparent K m-value for the turnover of acetamide for the resting cells was determined to be around 40mM at pH 8.5 and 55°C, whereas the K m-value of the purified amidase was predicted to be about 20 mM. This organism exhibited greater turnover of aliphatic amides as compared to aromatic amides. Although these cells showed maximal amide-degrading activity at 55°C, simulated wastewater treatment was carried out at 45°C, because of the greater stability of the amidase activity at that temperature. Of note, indices for overall temperature stability, based on the temperature dependence of apparent first order kinetic temperature denaturation constants, were determined to be –7.9±1.1×10–4, and –13.7±1.3×10–4, –14.5±0.7×10–4, and –13.7±0.8×10–4°Cmin, for free cells and cells immobilized in alginate, agar and polyacrylamide respectively. After 250min the reactor showed maximum degradation of acetamide, propionamide and acrylamide of about 97, 100 and 90%, respectively by using 883 enzyme activity units per reactor stage. The results of this investigation showed that R. rhodochrous NHB-2 expressing thermostable amidase could be used for the efficient treatment of wastewater containing toxic amides. Therefore, we suggest that this microbe has a very high potential for the detoxification of toxic amides from industrial effluents and other wastewaters.  相似文献   

3.
Aggregation agent type and concentration, lipase and glutaraldehyde concentration, and pH are able to affect the formation of cross-linked lipase. The carrier-free immobilized Candida rugosa lipase with a particle size of 40–50 μm showed higher activity than that of the lipase with other particle sizes. The carrier-free immobilized C. rugosa lipase can keep 86% original lipase activity (0.018 g g−1 min−1). The enantioselectivity of the carrier-free immobilized lipase (23.3) was about 1.8 times as much as that of the native lipase (13.0) in kinetic resolution of ibuprofen racemic mixture.  相似文献   

4.
Levan fructotransferase (LFTase) from Arthrobacter ureafaciens K2032 was immobilized on various carriers of which Chitopearl BCW2501 beads showed the higher activity of 320 U g–1 for the formation of di-fructose anhydride compounds. The immobilized enzyme retained about 60% of its initial activity after being used for 20 cycles.  相似文献   

5.
Nitrate reduction was studied in the dinoflagellatePeridinium cinctum collected from extensive algal blooms in Lake Kinneret (Israel).Among several methods tested for the preparation of cell free extracts, only the use of a ground-glass tissue culture homogenizer was found to be efficient. The assimilatory nitrate reductase ofP. cinctum was located in a particulate fraction. In this respect,P. cinctum did not behave like other eukaryotes, such as green algae, but as a prokaryote. Nitrite reductase activity was found in the soluble fraction.Nitrate reductase used NADH as a preferable electron donor; it reacted also with NADPH but only to give 16.5% of the NADH dependent rate. Methyl viologen and benzyl viologen could also serve as electron donors, with rates higher than the NADH dependent activity (3–6 times and 1.5–3 times, respectively). The Km of nitrate reductase for NADH was 2.8×10–4 M and for NO3-1.9×10–4 M. Flavins did not stimulate the activity, nor was ferricyanide able to activate it. Carboxylic anions stimulated nitrate reductase activity 3–4 fold, an effect which was not mimicked by other anions.Chlorate, azide and cyanide were competitive inhibitors ofP. cinctum, nitrate reductase withK i values of 1.79×10–3 M, 2.1×10–5 M and 8.9×10–6 M respectively.  相似文献   

6.
Acinetobacter sp. strain W-17, immobilized on porous sintered glass completely degraded 500 mg phenol l–1 in 40 h, but free cells required 120 h for this to be achieved. Immobilized cells can be used 7 times without losing their activity.  相似文献   

7.
The autolysis of chlamydospore-like cells in Phanerochaete chrysosporium immobilized in polyurethane foam correlated with the production of manganese peroxidase (MnP). The maximum specific activity of MnP was 1055 U g dry mycelium–1 in the immobilized culture, compared with 260 U g dry mycelium–1 in the submerged culture. Scattered mycelial pellets were formed in the immobilized culture in which almost all of the chlamydospore-like cells were subject to autolysis. However, highly crowded pellets were formed in the free culture, in which only the chlamydospore-like cells in the exterior were subject to autolysis. We propose that the enhanced production of MnP in immobilized cultures of P. chrysosporium is due to increased autolysis of the chlamydospore-like cells.  相似文献   

8.
The effect of the presence of supplementary glucose or acetate on the growth and pyridine-degrading activity of freely suspended and calcium-alginate-immobilizedPimelobacter sp. was investigated. Although the supplementary carbon sources could be degraded simultaneously with pyridine,Pimelobacter sp. exhibited a preference for pyridine over supplementary carbon sources. Thus, the pyridine-degrading activity of the freely suspended cells was not decreased significantly by the addition of either glucose (1.5–6 mM) or acetate (6–24 mM) to the pyridine (6–24 mM). In the semi-continuous immobilized cell culture, immobilized cells also exhibited a preference for pyridine over supplementary carbon sources and did not switch their substrate preference throughout the culture. Owing to a high cell concentration, the volumetric pyridine degradation rate at 24 mM pyridine in the immobilized cell culture was approximately six times higher than that in the freely suspended cell culture. Furthermore, the immobilized cells could be reused 16 times without losing their pyridine-degrading activity during the culture period tested. Taken together, the use of immobilizedPimelobacter sp. for the degradation of pyridine is quite feasible because of the preference for pyridine over supplementary carbon sources, the high volumetric pyridine degradation rate, and the reusability of immobilized cells.  相似文献   

9.
A Pseudomonas sp. strain NGK1 (NCIM 5120) capable of utilizing 2-methylnaphthalene (2-MN) was immobilized in various matrices namely, polyurethane foam (PUF), alginate, agar and polyvinyl alcohol (PVA) (1.5 × 1012 c.f.u. g–1 beads). The degradation rates of 25 and 50 mM 2-MN by freely suspended cells (2 × 1011 c.f.u. ml–1) and immobilized cells in batches, semi-continuous with shaken culture and continuous degradation in a packed-bed reactor were compared. The PUF-immobilized cells achieved higher degradation of 25 and 50 mM of 2-MN than freely suspended cells and the cells immobilized in alginate, agar or PVA. The PVA- and PUF-immobilized cells could be reused for more than 30 and 20 cycles respectively, without losing any degradation capacity. The effect of dilution rates on the rate of degradation of 25 and 50 mM 2-MN with freely suspended and immobilized cells were compared in the continuous system. Increase in dilution rate increased the degradation rate only up to 1 h–1 in free cells with 25 mM 2-MN and no significant increase was observed with 50 mM 2-MN. With immobilized cells, the degradation rate increased with increase in dilution rate up to 1.5 h–1 for 25 mM and 1 h–1 for 50 mM 2-MN. These results revealed that the immobilized cell systems are more efficient than freely suspended cells for biodegradation of 2-MN.  相似文献   

10.
Degradation kinetics of phenol by free and agar-entrapped cells of Candida tropicalis was studied in batch cultures. The initial phenol degradation rate achieved with free cells was higher than that obtained with immobilized cells, when phenol concentrations up to 1000 mg l–1 were used. However, at higher phenol concentrations, the behaviour was quite different. The initial degradation rate of the immobilized yeast cells was about 10 times higher than that of the free cells, at a phenol concentration of 3500 mg l–1. The semicontinuous and continuous degradation of phenol by immobilized yeast cells was also investigated in a multi-stage fluidized bed reactor. The highest phenol removal efficiencies and degradation rates as well as the lowest values of residual phenol and chemical oxygen demand were obtained in the semicontinuous culture when phenol concentrations up to 1560 mg l–1 were used.  相似文献   

11.
N-Succinyl-chitosan (NSC), a pH-sensitive polymer of reversibly soluble–insoluble characteristics with pH change, was prepared by modification of the chitosan backbone with succinic anhydride and employed as carrier for alliinase immobilization. The obtained NSC is soluble at pH above 4.8 and insoluble at pH below 4.4. The characteristics of NSC were evaluated using Fourier transform IR spectrophotometer, the X-ray diffraction spectrometry and thermogravimetric analyzer. Under an optimized condition (glutaraldehyde 0.8% (v/v), 31.2 U alliinase), the enzyme immobilization yield was 75.6%. The maximum activity of NSCA was achieved at 40 °C, pH 7, while the free enzyme exhibited maximum activity at 30 °C, pH 6. The Michaelis–Menten constant of NSCA was lower than that of free alliinase, indicating higher affinity of immobilized enzyme toward its substrate. The NSCA retained 85% of its initial activity even after being recycled 5 times. The immobilized alliinase in reversibly soluble NSC is suitable to catalyze the conversion of alliin to allicin, as active ingredient of pharmaceutical compositions and food additive.  相似文献   

12.
Summary Whole cells of Saccharomyces bayanus, Saccharomyces cerevisiae and Zymomonas mobilis were immobilized by chelation/metal-link processes onto porous inorganic carriers. The immobilized yeast cells displayed much higher sucrose hydrolyzing activities (90–517 U/g) than the bacterial, Z. mobilis, cells (0.76–1.65 U/g). The yeast cells chelated on hydrous metal oxide derivative of pumice stone presented higher initial -d-fructofuranosidase (invertase, EC 3.2.1.26) activity (161–517 U/g) than on other derivatives (90–201 U/g). The introduction of an organic bridge between the cells and the metal activator led to a decrease of the initial activity of the immobilized cells, however S. cerevisiae cells immobilized on the carbonyl derivative of titanium (IV) activated pumice stone, by covalent linkage, displayed a very stable behaviour, which in continuous operation at 30° C show only a slightly decrease on invertase activity for a two month period (half-life=470 days). The continuous hydrolysis of a 2% w/v sucrose solution at 30° C in an immobilized S. cerevisiae packed bed reactor was described by a simple kinetic model developed by the authors (Cabral et al., 1984a), which can also be used to predict the enzyme activity of the immobilized cells from conversion degree data.  相似文献   

13.
The capacity of chitin (from crab shells) and of fungal cell walls from Trichoderma harzianum to accumulate zinc, cadmium and mercury was studied as well as the effects of adsorbed metals on the enzymatic hydrolysis by Novozym 234 of the two substrates. The total adsorbing capacity with respect to these metals was estimated to be at least 10 mmol kg–1 chitin (dry weight) and 50 mmol kg–1 fungal cell walls (dry weight), respectively, at pH 6.1. Enzymatic digestion of fungal cell walls preloaded with mercury and cadmium was significantly reduced, while zinc did not cause any significant inhibition. The effect of metal complexation by chitin on the enzymatic digestion was not as pronounced as for fungal cell walls. This could reflect the fact that chitin sorbed a lower total amount of metals. The inhibitory effect of metals on the enzymatic hydrolysis was caused by the association of the metals with the two substrates and not by the presence of free metals in solution.  相似文献   

14.
In situ uptake of inorganic carbon and nitrogen by the aquatic liverworts Jungermannia vulcanicola Steph. and Scapania undulata (L.) Dum. was measured in an acid stream, Kashiranashigawa, Japan. The uptake activities were similar in the both species. The activities were highest at the tip of shoots, and decreased gradually towards the base. Carbon uptake at the tip in the light was 10.4 × 10–4 for J. vulcanicola and 8.1 × 10–4 g C g dry wt–1 h–1 1 for S. undulata. Ammonium was effectively incorporated into the shoots, and the uptake activity at the tip was between 1.9 × 10–5 and 5.8 × 10–5 g N g dry wt–1 h–1. Nitrate uptake was smaller than ammonium uptake. The ratio of dark to light uptake in ammonium uptake experiments was larger than that in carbon uptake experiments. These results suggest that the liverworts use ammonium as a major nitrogen source, and that ammonium uptake was less dependent on light than carbon uptake.  相似文献   

15.
W.Z. Tan  Q.J. Li  L. Qing 《BioControl》2002,47(4):463-479
Alligatorweed (Alternanthera philoxeroidesG.) has become a serious weed in different crops in China. A fungal pathogen was found in Chongqing and Sichuan Provinces and was identified as a species in the Fusarium genus. The fungus produced macroconidia and chlamydospores abundantly on potato sucrose agar (PSA) plates. The bestconidial production and germination and colonygrowth of Fusarium sp. were at 23–31°C and pH 6.7–7.0. Light period and flooding did not affect fungal growth and conidium formation. The herbicides, glyphosate and paraquat, inhibited the fungal development in vitro. The fungus did not affect seed germination and seedling growth of paddy rice, wheat, maize, oilseed rape and broad bean inlaboratory or greenhouse trials. Inoculum density and wetness duration influenced the efficiency of Fusarium sp. to control alligatorweed; a concentration of 1.0 × 105 spores–1 ml and 12 h of high humidity duration after inoculation produced goodinfections on the weed at 23°C in the laboratory. When the fungus was applied to alligatorweed grown in greenhouse and in the field, good biocontrol efficiency was obtained: the plants started to wilt after four to five (greenhouse) or six days (field), and were killed 9–10 (greenhouse) or 13–14 (field) days after spraying the fungal inoculum. This was similar to the control efficiency resulting from glyphosate treatment. Therefore, this Fusarium sp. appeared to be a good candidatefor further studies and a promising biocontrol agent to manage alligatorweed in some terrestrial and aquatic crops.  相似文献   

16.
After a period of more than ten years in which bacterial and algal community sizes were extremely small, a dense bloom of halophilic archaea developed in the upper 5–10 m of the Dead Sea water column in the summer of 1992. The development of this bloom followed a dilution of the upper water layer by winter rainfloods, which enabled the development of a short-lived dense bloom of the unicellular green alga Dunaliella parva. The dense archaeal community (up to 3.5 × 107 cells m1–1 in June 1992) imparted a red coloration to the Dead Sea, due to its high content of bacterioruberin. Bacteriorhodopsin was not detected. High levels of potential heterotrophic activity were associated with the bloom, as measured by the incorporation of labeled organic substrates. After the decline of the algal bloom, archaeal numbers in the lake decreased only little, and most of the community was still present at the end of 1993. The amount of carotenoid pigment per cell, however, decreased 2–3-fold between June 1992 and August 1993. No new algal and archaeal blooms developed after the winter floods of 1992–1993, in spite of the fact that salinity values in the surface layer were sufficiently low to support a new algal bloom. A remnant of the 1992 Dunaliella bloom maintained itself at the lower end of the pycnocline at depths between 7 and 13 m (September 1992–August 1993). Its photosynthetic activity was small, and very little stimulation of archaeal growth and activity was associated with this algal community.  相似文献   

17.
Evaluation of enzyme activities in combination with taxonomic analyses may help define the mechanisms involved in microbial decomposition of orgaic amendments and biological control of soilborne pathogens. In this study, powdered pine bark was added to nematode-infested soil at rates of 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 g kg–1. Total fungal populations did not differ among treatments immediately after application of pine bark. After 7 days, fungal populations were positively correlated with increasing levels of pine bark. This increase was sustained through 14 and 21 days.Penicillium chrysogenum andPaecilomves variotii were the predominant fungal species isolated from soil amended with pine bark. Total bacterial populations did not change with addition of pine bark at 0, 7, and 14 days after treatment. At 21 and 63 days, total bacterial populations declined in soil receiving the highest rates of pine bark. Addition of pine bark powder to soil caused a shift in predominant bacterial genera fromBacillus spp. in nonamended soil, toPseudomonas spp. in amended soil. Soil enzyme activities were positively correlated with pine bark rate at all sampling times. Trehalase activity was positively correlated with total fungal populations and with predominant fungal species, but was not related to bacterial populations. The number of non-parasitic (non-stylet bearing) nematodes andMeloidogyne arenaria in soil and roots were not correlated with pine bark rate. However,Heterodera glycines juveniles in roots, and the number of cysts g–1 root, declined with increasing levels of pine bark.Journal Series Series No. 18-933598 Alabama Agricultural Experiment Station  相似文献   

18.
The inversion of sucrose with β- -fructofuranosidase (EC 3.2.1.26) immobilized by an ionic bond on bead cellulose containing weak basic N,N-diethylamino-2-hydroxypropyl groups has been investigated. The immobilized enzyme is strongly bound at an ionic strength up to 0.1 M in the pH range 3–6. The amount adsorbed is proportional to porosity and to the exchange capacity of the ion exchange cellulose, reaching values up to 200 mg/g dry carrier, with an activity in 10% sucrose solution at 30°C, pH 5, >8000 μmol min−1 g−1. The inversion of sucrose with immobilized β- -fructofuranosidase was carried out in a stirred reactor. The dependence of activity on pH (3–7), temperature (0–70°C) and concentration of the substrate (2–64 wt%) were determined, and the inversion was compared with that obtained using non-immobilized enzyme under similar conditions. The rate of inversion at low substrate concentration (2–19 wt%) was described by Michaelis-Menten kinetics.  相似文献   

19.
The susceptibility of the tick Boophilus microplus to Beauveria bassiana was evaluated by inoculating eggs, larvae and engorged females of the tick with five fungal isolates at concentrations of 106, 107 and 108 conidia/ml. Tick eggs (0.25 g) were immersed in 1 ml of a suspension of the different conidial concentrations for 1 min. Similar exposure was performed by immersion of 2000 larvae and homogeneous groups of nine engorged females in 2 and 20 ml of conidial suspension, respectively. Treated eggs, larvae and adults were placed in an incubator at 27 ± 1 °C and relative humidity above 80% for evaluation of the fungal action. All fungal isolates applied at all conidial concentrations reduced the hatching rate of larvae from treated eggs by 1.36–65.58% and increased the mortality rate of inoculated larvae by 0.8–70.49%. In the bioassay with engorged females, oviposition period was reduced by 9.69–47.80%, egg mass weight by 4.71–53.87%, estimated reproduction by 8.3–60.62%, egg production index by 5.03–54.20%, percent larval hatching by 0.27–13.96%, and the mortality rate of treated females was increased by 96.60–100%. The reduction of the estimated reproduction obtained for the treated groups ranged from 8.37 to 64.52%. The sporulation of the pathogen on dead females ranged from 3.70 to 88.88% depending on the isolate and concentration used. Isolates AM 09, CB 7 and JAB 07 were the most effective and effectiveness increased with increasing concentrations of conidia in the suspensions.  相似文献   

20.
Conidia ofPenicillium variabile P16 were immobilized in polyurethane sponge and used in repeated-batch processes in a fluidized-bed reactor. Optimal conditions for production of glucose oxidase and catalase were: inoculum size, 10%; glucose concentration, 80 g L–1; Ca-carbonate concentration, 15 g L–1; temperature, 28°C and aeration rate, 4 VV–1 min–1. In an extended repeated-batch process, glucose oxidase activity was highest after the fourth batch and catalase activity was highest after the fifth batch. Scanning electron microscopy showed that the fungus grew only in the interior of carrier particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号