首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The terrestrial horned frog, Ceratophrys ornata, lives on a wet substratum and absorbs water through the ventral epidermis; water is lost by evaporation from the dorsal skin. Thus, this species may be useful as a model for determining whether or not skin histology and lectin-binding patterns, indicative of glycoconjugates, are related to skin functions such as osmoregulation and water balance. With this in mind, a histological and lectin-histochemical study was carried out on dorsal and ventral skin of aquatic tadpoles and of a young terrestrial frog of C. ornata. Sections of skin were stained with various dyes to demonstrate general histological features and with two horseradish peroxidase (HRP)-conjugated lectins, Ulex europaeus agglutinin (UEA 1) and soybean agglutinin (SBA) which bind to specific terminal sugar residues of glycoconjugates, namely L-fucose and N-acetyl-D-galactosamine or D-galactose, respectively. In early stage tadpoles both lectin-binding patterns were similar in the bilaminar epidermis of dorsal and ventral skin (i.e., each lectin stained the apical cell layer). However, metamorphic changes resulted in a young frog with typical adult-type skin composed of a stratified squamous epidermis and three distinct types of glands containing glycoconjugates in their secretions. Strikingly different lectin-binding patterns were evident in the epidermis from dorsal and ventral regions of the body. The epidermis from the dorsal region was stained by both lectins; in contrast, that from the ventral region although stained strongly by HRP-SBA, did not react with HRP-UEA 1 indicating that few, if any, fucose residues were present in the ventral epidermis. These findings, as suggested in the discussion, indicate that different glycoconjugate patterns in dorsal and ventral skin may be associated with the regulation of water balance in the frog.  相似文献   

2.
A lectin histochemical study was carried out to determine the distribution of specific sugars in glycoconjugates within an important osmoregulatory organ, amphibian skin. Paraffin sections were made of Rana pipiens skin from dorsal and ventral regions of aquatic larvae in representative developmental stages as well as from several body regions of semiaquatic adult frogs. Sections were incubated with horseradish peroxidase (HRP)‐conjugated lectins, which bind to specific terminal sugar residues of glycoconjugates. Such sites were visualized by DAB‐H2O2. The following HRP‐lectins were used: UEA‐1 for α‐L ‐fucose, SBA for N‐acetyl‐D ‐galactosamine, WGA for N‐acetyl‐β‐D ‐glucosamine, PNA for β‐galactose, and Con A for α‐mannose. We found that lectin binding patterns in larvae change during metamorphic climax as the skin undergoes extensive histological remodeling; this results in adult skin with staining patterns that are specific for each lectin and are similar in all body regions. Such findings in R. pipiens provide additional insight into the localization of molecules involved in osmoregulation in amphibian skin. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
The thumb pad is one of the most common secondary sexual characteristics in frogs. Although it is known that amphibian skin has affinity for several lectins, there is no report regarding lectin‐binding affinity of the thumb pad or its structural components. This study investigated localization and seasonal variation of specific carbohydrate moieties of glycoconjugates in both the epidermal and dermal components of the frog thumb pad at the light microscopic level using lectin histochemistry. The study consisted of four seasonal groups of the frog species, Pelophylax ridibundus (Synonym of Rana ridibunda): active, prehibernating, hibernating and posthibernating. Four horseradish peroxidase conjugated lectins were employed. It was found that dolichos biflorus agglutinin (DBA), wheat germ agglutinin (WGA), and ulex europaeus (UEAI) gave positive reactions in both epidermal layers and breeding glands. These three lectins bound specific secretory cells in the breeding glands, and the distribution of the cells and epithelial lectin reactions exhibited seasonal changes. In addition, UEA‐I and peanut agglutinin (PNA) showed an affinity in granular glands and the granular zone of mixed glands. Generally, epidermal lectin binding showed dense affinity during the posthibernation period. DBA, UEA‐I, and WGA‐specific cells in the mucous gland decreased gradually until the posthibernation period. These findings suggest that differences of lectin binding in the thumb pad may be related to functional activities and, thus, seasonal adaptations. Moreover, the presence of specific lectin‐binding cells in the breeding glands indicated that they consisted of heterogeneous secretory cell composition or that the cells were at different secretory stages. J. Morphol. 275:76–86, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
1. The sugar specificities of four lactose-binding lectins were studied through the agglutination of adult and/or umbilical cord human erythrocytes (AHRBC and/or CHRBC). 2. Rana catesbeiana egg lectin specifically agglutinated both intact blood group A-AHRBC and intact blood group A-CHRBC. 3. Rana catesbeiana liver lectin agglutinated intact A-AHRBC much more strongly than intact A-CHRBC. 4. Xenopus laevis skin lectin nonspecifically agglutinated AHRBC and CHRBC. 5. Plecoglossus altivelis egg lectin specifically agglutinated intact B-AHRBC, but weakly agglutinated intact B-CHRBC. 6. Comparative studies of lectin-induced AHRBC or CHRBC agglutination clarified the sugar-binding specificities of these lectins.  相似文献   

5.
We have examined the role of cell surface glycoconjugates during mouse blastocyst maturation, hatching, attachment, and outgrowth by monitoring the influence of six lectins on blastocyst development in vitro. Two lectins, concanavalin A and wheat germ agglutinin were toxic to blastocysts at the concentrations used. Bandierea simplicifolia lectin 1 (BSL-1) induced abnormal growth, developmental arrest at the hatching stage, and some disruption of cell contacts. Culture with Lotus tetragonolobus lectin-1 (LTA-1) also disrupted cell contacts and caused developmental arrest. The remaining lectins, Dolichos biflorus agglutinin (DBA) and Ulex europaeus agglutinin (UEA), retarded blastocyst hatching and outgrowth but did not induce any major defects, although differentiation of the inner cell mass was limited by both. This study demonstrates that very low concentrations of lectins can disrupt blastocyst development, suggesting that exposed surface saccharide moieties may be involved in interactions between blastomeres and their environment.  相似文献   

6.
Summary Renal biopsy specimens showing histological alterations typical of advanced diabetic glomerulopathy were studied for changes in glomerular glycoconjugates, using fluorochrome-coupled lectins as probes. All samples studied showed a marked reduction in the binding ofTriticum vulgaris (WGA) lectin in the glomerular basement membranes. On the other hand, new glomerular binding sites for the lectins ofDolichos biflorus (DBA),Helix pomatia (HPA) andArachis hypogaea (PNA), recognizing galactosyl moieties of glycoconjugates and giving no reaction in normal glomeruli, were seen in all samples studied. In addition,Wistaria floribunda lectin (WFA), recognizing galactosyl and.N-acetylgalactosaminyl configurations in glycoconjugates, gave a typical linear binding along the glomerular basement membranes, differing markedly from its reaction with normal kidney.Ulex europaeus (UEA I) showed reduced binding in the glomeruli of diabetic nephropathy.The results show that changes in glomerular glycoconjugates may appear in diabetic nephropathy, suggesting a disturbance in the turnover of the non-reducing terminal saccharide residues. In addition, the results show that lectins are useful probes for studying these changes further.  相似文献   

7.
A comparison of lectin binding in rat and human peripheral nerve   总被引:2,自引:0,他引:2  
Eleven different fluorescein- or peroxidase-conjugated lectins with different sugar-binding affinities were employed to analyze and compare glycoconjugates of rat and human peripheral nerves at the light microscopic level. A majority of lectins showed a distinct binding pattern in different structures of the nerve. Lectin binding was similar but not identical in rat and human nerves. Limulus polyhemus agglutinin did not stain any structures in rat or human nerves. In both species, all other lectins bound to the perineurium. Perineurial staining was intense with Canavalia ensiformis (Con A), Triticum vulgaris (WGA), Maclura pomifera (MPA); moderate with Glycine max (SBA), Griffonia simplicifolia-I (GS-I) and GS-II; weak with Ulex europaeus (UEA), Dolichos biflorus (DBA), and Ricinus communis (RCA). In the endoneurium of both species, ConA staining was intense, MPA and WGA moderate, SBA, GS-II, PNA, and RCA weak, and UEA and DBA absent. Interestingly, GS-I stained rat but not human endoneurium. Most lectins bound to blood vessels. GS-I bound to rat but not human, whereas UEA bound to human but not rat vessels. The results show that lectins can be used to reveal heterogeneity in sugar residues of glycoconjugates within neural and vascular components of nerves. They may therefore be potentially useful in detecting changes in glycoconjugates during nerve degeneration and subsequent regeneration after trauma or in pathological states.  相似文献   

8.
The dorsal and ventral skin in amphibians plays an important role in osmoregulation. Prolactin hormone is involved in regulation of amphibian skin functions, such as water and electrolyte balance. Therefore, amphibians may be useful as a model for determining the sites of the prolactin receptor. In this study, prolactin receptor was detected in frog dorsal and ventral skin using immunohistochemical staining method. Prolactin receptor immunoreactivity was localized in all epidermal layers except stratum corneum of dorsal skin epidermis, stratum germinativum layer of ventral skin epidermis, myoepithelial cells, secretory epithelium and secretory channel cells of granular glands in both skin regions. The mucous glands and secretory granules of granular glands did not show immunoreactivity for the prolactin receptor. According to our immunohistochemical results, the more widespread detection of prolactin receptor in dorsal skin epidermis indicates that prolactin is more effective in dorsal skin. Presence of prolactin receptors in epidermis points out its possible osmoregulatory effect. Moreover, detection of receptor immunoreactivity in various elements of poison glands in the dermis of both dorsal and ventral skin regions suggests that prolactin has a regulatory effect in gland functions.  相似文献   

9.
Fluorescein-isothiocyanate (FITC) labeled lectins were used to study the distribution pattern of specific binding-sites in histological sections of normal and osteoarthrotic articular cartilage from the mouse knee joint. Male inbred mice of the STR/1N-strain develop spontaneous arthrotic articular cartilage lesions on the medial condyle of tibia and femur. The varus-deformity of the knee joint leads to a recurrent medial patellar luxation with osteoarthrotic defects on the medial part of the facies patellaris femoris. It was demonstrated that the lectin staining pattern of osteoarthrotic articular cartilage, especially on the facies patellaris femoris, was different from that of normal articular cartilage. The differences in lectin staining corresponded to those observed between normal and fibrillated articular cartilage from human patellae. The normal articular cartilage of the mouse knee joint possessed lectin binding-sites for Concanavalin A (ConA) and wheat germ agglutinin (WGA), but not for Ulex europaeus agglutinin (UEA), soy bean agglutinin (SBA) and peanut agglutinin (PNA). In addition to the completely changed distribution pattern of ConA and WGA in osteoarthrotic cartilage, SBA, PNA and UEA developed distinct staining patterns particular to the fibrillated areas of arthrotic cartilage. The increased lectin-binding to arthrotic articular cartilage may be due to unmasking of sugars in the course of bondage breakdown in fibrillated cartilage or the production of pathological glycoproteins. It is evident that lectins can demonstrate minute differences between normal and arthrotic cartilage and it is concluded, therefore, that lectins are sensitive and specific tools for the study of degenerative joint diseases.  相似文献   

10.
Carbohydrate binding proteins, known as lectins, bind to specific sugar groups on most membranes. We used fluorescent and light microscopy to study the interaction of various lectins with the membranes of microglia cultured from neonatal rat or fetal mouse cerebral cortices. Microglia stained intensely with GS-1, RCA, WGA, and ConA and slightly with DBA, UEA, BPA, and SBA. No staining was seen with GS-2, MPA, or PNA. Staining was specific for microglia in the mixed glial cultures and was dose dependent. In addition, microglial lectin binding could be reduced or blocked by competitive inhibition using specific sugars. Treatment of the microglia with agents such as dimethylsulfoxide (DMSO), interleukin-1 (IL-1), interferon (IFN), or lipopolysaccharide (LPS) did not eliminate lectin staining, although the degree of staining was altered. Positive staining of the microglia was also associated with a functional change for at least one lectin, i.e., ConA. Superoxide anion production by microglia was increased in the presence of ConA. Overall, binding of the lectins GS-1, RCA, WGA, and ConA can be used as an identifying tool for microglia in glial cultures, but intensity of staining varies depending on their functional state.  相似文献   

11.
To better understand the general distribution of glycoproteins and the distribution of specific glycoprotein-bound sugar residues in Paramecium, a survey of the binding pattern of selected lectins was carried out in P. tetraurelia, P. caudatum, and P. multimicronucleatum. Lectins studied were concanavalin A (Con A), Griffonia simplicifolia agglutinins I and II (GS I and GS II), wheat germ agglutinin (WGA), Ulex europaeus (UEA I), peanut agglutinin (PNA), Ricinis communis toxin (RCA60) and agglutinin (RCA120), soybean agglutinin (SBA), Bauhinia purpurea agglutinin (BPA), Dolichos biflorus agglutinin (DBA), and Maclura pomifera agglutinin (MPA). Those giving the most distinctive patterns were Con A, GS II, WGA, UEA I, and PNA. No significant differences were found between the three species. Concanavalin A, a mannose/glucose-binding lectin, diffusely labeled the cell surface and cytoplasm and, unexpectedly, the nuclear envelopes. Events of nuclear division, and nuclear size and number were thus revealed. Both WGA and GS II, which are N-acetylglucosamine-binding lectins, labeled trichocyst tips, the cell surface, and the oral region, revealing stages of stomatogenesis. The lectin WGA, in addition, labeled the compartments of the phagosome-lysosome system. The lectin PNA, an N-acetyl galactosamine/galactose-binding protein, was very specific for digestive vacuoles. Finally, UEA I, a fucose-binding lectin, brightly labeled trichocysts, both their tips and body outlines. We conclude that a judicious choice of lectins can be used to localize glycoproteins and specific sugar residues as well as to study certain events of nuclear division, cellular morphogenesis, trichocyst discharge, and events in the digestive cycle of Paramecium.  相似文献   

12.
To localize membrane glycoconjugates in neurons of the mouse spinal cord and dorsal root ganglia (DRG), cryostat sections of newborn (P0), 7 day-old (P7), P14, P21 and P31 animals were stained with ten FITC-conjugated plant lectins, the majority of them recognizing N-acetyl-D-galactosamine (GalNAc) terminal sugar residues. In the dorsal root ganglia of P0 animals, the different lectins showed distinct patterns of labeling in either cells of the nervous system, including neurons, or other structures such as nerves or blood vessels. Moreover, some of these lectins showed important changes in their pattern of labeling during postnatal development. This was especially relevant for lectins that label a subpopulation of small-sized cells that have been previously identified as the nociceptive cells of the DRG. Enzymatic digestion of sections with neuraminidase removes sialic acid from the carbohydrate chains of glycoconjugates thus exposing novel sugar residues. When this treatment was applied to DRG sections from postnatal animals the pattern of lectin staining was either changed or eliminated and heterogeneous subsets of glycoconjugates normally masked by this sugar were exposed. In the spinal cord of PO animals, none of the lectins labeled cells in the central gray matter. However, after the enzymatic digestion of sections with neuraminidase, spinal cord motoneurons and some other cells were labeled by two of the lectins suggesting that GalNAc residues present in these cells are normally masked by terminal sialic acid. Altogether, these results show important changes in the temporal and spatial expression of glycoconjugates that may be relevant for the postnatal development of the CNS and PNS of mice.  相似文献   

13.
Summary Mouse embryos at the blastocyst, blastocyst outgrowth, and primitive streak (day 7.5) stages of development were analysed for expression of lectin receptors using a panel of six FITC-conjugated lectins with affinities for five distinct saccharides (BSL, ConA, DBA, LTL, UEA and WGA). Blastocyst trophoblast expressed receptors for all the lectins but later tissues of the trophectoderm lineage lost receptors for distinct but overlapping subsets of the lectin panel. The inner cell mass (ICM) of the early blastocyst lacked receptors only for UEA. Differentiation of primary endoderm was accompanied by the aquisition of UEA receptors but subsequent differentiation into visceral and parietal endoderm involved the loss of receptors for both fucose binding lectins (UEA and LTL). Embryonic ectoderm in the day 7.5 egg cylinder retained receptors only for ConA and WGA. Thus, in general, differentiation during the peri- and early post-implantation period was associated with a differential loss of lectin receptors in all cell lineages of the mouse conceptus.  相似文献   

14.
Among lectins in the skin mucus of fish, primary structures of four different types of lectin have been determined. Congerin from the conger eel Conger myriaster and AJL-1 from the Japanese eel Anguilla japonica were identified as galectin, characterized by its specific binding to β-galactoside. Eel has additionally a unique lectin, AJL-2, which has a highly conserved sequence of C-type lectins but displays Ca2+-independent activity. This is rational because the lectin exerts its function on the cutaneous surface, which is exposed to a Ca2+ scarce environment when the eel is in fresh water. The third type lectin is pufflectin, a mannose specific lectin in the skin mucus of pufferfish Takifugu rubripes. This lectin showed no sequence similarity with any known animal lectins but, surprisingly, shares sequence homology with mannose-binding lectins of monocotyledonous plants. The fourth lectin was found in the ponyfish Leiognathus nuchalis and exhibits homology with rhamnose-binding lectins known in eggs of some fish species. These lectins, except ponyfish lectin, showed agglutination of certain bacteria. In addition, pufflectin was found to bind to a parasitic trematode, Heterobothrium okamotoi. Taken together, these results demonstrate that skin mucus lectins in fish have wide molecular diversity.  相似文献   

15.
The intracellular distribution of lectin receptor sites was studied in the rat Pyla osteoblasts using immunofluorescence at the confocal microscopy level. This immortalized cell line was found to represent a satisfactory model to study the occurrence and distribution of sugar moieties. Our data showed distinct affinity patterns of lectins recognizing different terminal or internal sugar residues. For some lectins, the binding patterns appeared to be cell cycle-independent, whereas for PNA the cell cycle greatly influenced the nuclear binding. By combining lectin affinity with sialidase degradation and alcoholic saponification the sialic acid acceptor sugars and derivatives were also visualized. In particular, glycoconjugates with sialic acids linked to beta-galactose, and mainly C4 acetylated, were located in the cytoplasm, while glycoconjugates characterized by sialic acids linked to alpha-N-acetylgalactosamine, and devoid of acetyl groups at C4, were almost exclusively found in the nucleus. The comparison of lectin affinities, with and without prior glycosidase digestions, allowed us to gain further insight into the chemical composition of glycoconjugates that act as the lectin receptor sites that appeared to belong to O- and N-linked glycoconjugates. The use of additional enzymatic treatments were useful to better establish the localization of nuclear receptor sites and results were compared with previous studies about endogenous and exogenous lectins in an attempt to reconcile the association of lectins and sugars within the nucleus and their possible involvement in modulation of cell proliferation and/or response to chemical signals. The above digestions also provided information about the cytoplasmic binding patterns.  相似文献   

16.
Binding of multivalent glycoconjugates by lectins often leads to the formation of cross-linked complexes. Type I cross-links, which are one-dimensional, are formed by a divalent lectin and a divalent glycoconjugate. Type II cross-links, which are two or three-dimensional, occur when a lectin or glycoconjugate has a valence greater than two. Type II complexes are a source of additional specificity, since homogeneous type II complexes are formed in the presence of mixtures of lectins and glycoconjugates. This additional specificity is thought to become important when a lectin interacts with clusters of glycoconjugates, e.g. as is present on the cell surface. The cryst1al structure of the Glc/Man binding legume lectin FRIL in complex with a trisaccharide provides a molecular snapshot of how weak protein-protein interactions, which are not observed in solution, can become important when a cross-linked complex is formed. In solution, FRIL is a divalent dimer, but in the crystal FRIL forms a tetramer, which allows for the formation of an intricate type II cross-linked complex with the divalent trisaccharide. The dependence on weak protein-protein interactions can ensure that a specific type II cross-linked complex and its associated specificity can occur only under stringent conditions, which explains why lectins are often found forming higher-order oligomers.  相似文献   

17.
The changing pattern of expression of glycoconjugates during the differentiation of the chick leg bud between stages 17 to 34 (days 3 to 8 of incubation) was studied using fluorochrome-labelled plant lectins. Limb buds were fixed in cold acetic-alcohol and wax-embedded. Agglutinins of peanut (PNA), soybean (SBA) and succinylated wheat germ (WGAs) revealed a specific binding pattern in the apical ectodermal ridge (AER) between Hamburger and Hamilton stages 19-32. These stages coincide with the period of elevation of the AER. This specific binding pattern was absent from the adjacent dorsal and ventral ectoderm. Prechondrogenic cells were positive for WGA and for PNA, and the PNA-binding capacity was intensified after neuraminidase treatment. Premyogenic cells at stage 23 can be identified as negative to PNA after neuraminidase, while the blood vessels became positive. PNA, SBA, WGA, WGAs and, in addition, Ricinus communis (RCA-I) lectins stained the basal membrane. Strands of extracellular matrix which connect with the basal membrane and cross the limb transversely between dorsal and ventral ectoderm were stained by RCA-I, SBA and PNA after neuraminidase.  相似文献   

18.
In this study, lectin-binding techniques are applied to growth-plate cartilage to analyze the intracellular localization of lectin-binding glycoconjugates of chondrocytes in situ. The binding of ten fluorescein-conjugated lectins is analyzed on 1-micron-thick Epon-embedded, nondecalcified sections of growth plates from Yucatan swine. Comparisons are made to intracellular binding in chondrocytes of tracheal, articular, and auricular cartilage. Ear epithelium, tracheal epithelium, and kidney are used as positive control tissues for the specificity of lectin binding. Only the mannose-binding lectins had affinity for the RER and nuclear envelope. Eight lectins reacted within the Golgi complex with characteristic patterns which ranged from localized fine linear strands to extensive vesicular accumulations. When cartilage slabs were exposed before embedment to the ionophore monensin to disrupt intracellular transport through the Golgi, it was possible to define differential subcompartments of the Golgi complex, based upon sites of sugar addition. Also, it was possible to characterize the cytoplasmic deposits of reserve-zone chondrocytes which were positive with concanavalin A as glycogen, based upon their sensitivity to amylase. This method allows resolution at the light-microscopic level of lectin-binding glycoconjugates with localization to specific organelles. Patterns of intracellular binding were consistent with biochemical data relating to the subcellular localization of processing steps of complex carbohydrates prior to secretion.  相似文献   

19.
A wide range of tissues from three interfertile species of mice and an interspecific hybrid was examined with lectins conjugated to peroxidase to localize specifically glycoconjugates containing terminal alpha-N-acetylgalactosamine, alpha-galactose, and alpha-fucose, and the terminal disaccharide galactose-(beta 1----3)-N-acetylgalactosamine. This battery of lectins disclosed marked heterogeneity of glycoconjugates in different histological sites in a given animal and even between cells in a presumably homogeneous cell population within an organ. No variation with any lectin was observed between individuals of two closely related inbred strains of Mus domesticus at any specific histological or cytological site. In contrast, littermates of an outbred strain of Mus castaneus differed in binding of certain lectins at various sites, attesting to a genetic basis for individual variation. Hybrids between castaneus and domesticus mice also showed individual variation. Moreover, extensive differences between the mouse species were demonstrable with every lectin in glycoconjugates of stored secretions, Golgi cisternae, and apical or basolateral plasmalemma in many cell types. Totaling the differences in tabulated staining intensities for each possible species pair gave a measure of the overall extent of difference at 53 histological sites. According to this measure, the three species are about equally divergent from one another. Some differences between species appeared to depend on histological rather than histochemical variation, as, for example, a greater abundance of granular duct cells in the sublingual and submandibular glands in Mus hortulanus. Other differences were apparently derived from pathological change, as exemplified by casts and lymphoid infiltrates in kidney and structurally atypical submandibular gland lobules in Mus castaneus, and possibly by infiltrating cells in intestinal lamina propria and epithelium in Mus castaneus and hortulanus.  相似文献   

20.
Summary Fifteen lectin-horseradish peroxidase conjugates have been used in a comprehensive histochemical study of human skeletal muscle. The staining patterns of many lectins were found to be coincident with the known distributions of types I, III, IV and V collagen, fibronectin and laminin. One lectin,Bandeiraea simplicifolia (BSA I), selectively stained capillaries in a blood group-specific manner, the significance of which is unknown. The results show that although lectins are useful cytochemical probes for identifying tissue glycoconjugates, lectin binding is not solely determined by monosaccharide specificity as lectins which interact with the same sugars may have completely different staining patterns. Factors such as accessibility, glycan conformation and oligosaccharide sequence also affect lectin binding in tissues. For these reasons, we conclude that a comprehensive histochemical investigation of tissue glycoconjugates should employ a large number of lectins, preferably with overlapping sugar specificities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号