首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of PGE2 on the activation of quiescent lung fibroblasts   总被引:2,自引:0,他引:2  
The effect of prostaglandin E2 (PGE2) on fibroblast proliferation was examined. The presence of PGE2 for 24 h inhibited the growth of quiescent cells stimulated with serum, platelet-derived growth factor and macrophage-derived factors. Maximal inhibition of nuclear labeling with [3H]thymidine occurred at concentrations greater than 10(-7) M. The inhibitory effect of PGE2 was less potent in exponentially growing cells and was not the result of conversion of PGE2 to PGA2 during incubation in growth medium. The G1 phase was determined to be 12-14 h in untreated cultures. The extent of growth inhibition by PGE2 was similar with addition of PGE2 at 0, 3, 6, or 9 h following restimulation of quiescent cell cultures. Approximately 25% of the cells that enter S phase are refractory to PGE2-induced growth inhibition. Short-term exposure to PGE2 (5 min and 30 min) caused substantial growth inhibition. The serum-induced proliferation was also inhibited by the cAMP analogue, dibutyrl cAMP. Our results suggest that PGE2 affects a distinct subpopulation of cells. Restimulation of quiescent cells treated with PGE2 for 24 h, indicated that release from PGE2 exposure is associated with prolongation of the G1 phase of the cell cycle.  相似文献   

2.
The role of mitogen-activated calcium influx from the extracellular medium in the control of cell proliferation was studied in Balb-c 3T3 fibroblasts. Stimulation of serum-deprived, quiescent cells with 10% foetal calf serum (FCS) induced a long-lasting (up to 70 min elevation of intracellular free calcium concentration ([Ca2+]i). Both the sustained [Ca 2+]i increase and the related inward current, described in a previous paper [Lovisolo D. Munaron L. Baccino FM. Bonelli G. (1992) Potassium and calcium currents activated by foetal calf serum in Balb-c 3T3 fibroblasts. Biochim. Biophys. Acta, 1104, 73–82], could be abolished either by chelation of extracellular calcium with EGTA or by SKF 96365, an imidazole derivative that can block receptor-activated calcium channels. The effect of the abolition of these ionic signals on FCS-induced proliferation was investigated by adding either EGTA or SK&F 96365 to the culture medium during the first hours of stimulation of quiescent cells with 10% FCS. As measured after 24 h, a 22% inhibition of growth was observed when SK&F 96365 was added for the first hour, and stronger inhibitions, up to 56%, were obtained by adding the blocker for the first 2 or 4 h. Similar effects were observed with addition of 3 mM EGTA, though the inhibition was less marked for the 4 h treatment. By contrast, incubation with either substance in the next 4 h of serum stimulation did not influence cell growth, except for a slight inhibition observed when SKF 96365 was applied from the 4th to the 8th hour. The reduction in growth resulting from the abolition of the early calcium influx was paralleled by an accumulation of cells in the G2/M phase. Both growth inhibition and G2/M accumulation were reversible, since after further 24 h in 10% FCS cells had fully recovered the exponential growth. These data indicate that the early calcium influx seen in response to mitogen stimulation develops on a timescale long enough to play a significant role in cell cycle progression, and that its block in the early G1 phase can lead to a reduction of proliferation by arresting cells in later stages of the cycle.  相似文献   

3.
Addition of 1 mm dibutyryl cyclic AMP (Bt2cAMP) to cultures of mouse hepatoma cells, Hepa, specifically stimulates the synthesis of serum proteins including albumin. This stimulation is accompanied by an inhibition of cell proliferation. We have investigated these phenomena in synchronous cultures of Hepa. Proliferation of Hepa was arrested by isoleucine starvation. Synchronous growth was initiated by addition of complete growth medium or complete growth medium supplemented with 1 mm Bt2cAMP. S phase and mitosis were estimated by determinations of [3H]thymidine incorporation and by cell numbers. The rate of albumin synthesis relative to total protein synthesis was measured by pulse labeling cultures for 30 min with [3H]leucine and comparing amounts of immunoprecipitable label with trichloroacetic acid-precipitable label. Treatment of synchronous cultures with Bt2cAMP did not alter the duration of S phase or the onset of mitosis. The relative rate of albumin synthesis in Bt2cAMP-treated culture began increasing after mitosis. The timing of the Bt2cAMP stimulation of albumin synthesis was further investigated by adding Bt2cAMP to cultures of Hepa at various times after the initiation of synchronous growth. The relative rate of albumin synthesis was then measured at a fixed postmitotic time. An increased relative rate of albumin synthesis was observed only in cultures exposed to Bt2cAMP before or during S phase. Thus the postmitotic increase in the synthesis of albumin requires the presence of Bt2cAMP during S phase.  相似文献   

4.
Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G0/G1 cell cycle arrest and increased levels of the CDK inhibitor p27kip1 and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-({4-[2-(E)-styrylphenoxy]butanoyl}-l-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G0/G1 cell cycle phase arrest and increased levels of p27kip1 in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G0 state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.  相似文献   

5.
Supernatants obtained from mouse fibrosarcoma cultures 48 hr after the addition of fresh medium contained dialyzable material which inhibited the proliferation of syngeneic lymphoma cells , as measured by 3H-thymidine incorporation. Three lines of evidence indicate that the supernatant inhibitory material is probably prostaglandin (PG) E. First, the supernatant and dialysate of the supernatant contained a substance with the same characteristics as PGE1 or PGE2 as detected by thin layer chromatography. Second, PGE2-treatment of lymphoma cells mimicked the inhibition of proliferation observed with supernatant inhibitory substance. Third, indomethacin treatment of fibrosarcoma cultures reduced the amount of supernatant inhibitory substance present.  相似文献   

6.
Methylglyoxal bis-(guanylhydrazone) (mGBG) blocked the stimulation of DNA synthesis in quiescent, density-inhibited BALB/c-3T3 cells treated with platelet-derived growth factor (PDGF) and platelet-poor plasma (PPP). Competence formation produced by a transient exposure to PDGF was not effected by mGBG. In contrast, mGBG effectively inhibited the PPP-stimulated progression of competent cells through the G1 phase of the cell cycle, although maximal inhibition was observed when mGBG was present during both the exposure to PDGF- and PPP-supplemented media. When quiescent cells were treated with PDGF and PPP-supplemented media in the presence of mGBG for 12–18 hours and the mGBG was then removed, cells entered the S phase after a 4 hour lag. The rate of entry into the S phase, but not the time necessary for the cells to progress from the mGBG block into the S phase, was dependent on the concentration of PPP present after removal of the mGBG. Either somatomedin C or insulin, but not epidermal growth factor, fibroblast growth factor, or PDGF were able to substitute for PPP in allowing cells to enter the S phase after the cells were released from the mGBG block. A marked inhibition of (3H)-leucine incorporation in serum-stimulated cultures was produced at mGBG concentrations which caused no decrease in the amount of (3H)-uridine incorporated during a short (15 minute) pulse. The ability of hormones to allow cells to progress to the late G1 phase and become committed to DNA synthesis after a mGBG inhibition was not related to their ability to restore the normal rate of protein synthesis as determined by (3H)-leucine incorporation.  相似文献   

7.
Chen CJ  Makino S 《Journal of virology》2004,78(11):5658-5669
Mouse hepatitis virus (MHV) replication in actively growing DBT and 17Cl-1 cells resulted in the inhibition of host cellular DNA synthesis and the accumulation of infected cells in the G0/G1 phase of the cell cycle. UV-irradiated MHV failed to inhibit host cellular DNA synthesis. MHV infection in quiescent 17Cl-1 cells that had been synchronized in the G0 phase by serum deprivation prevented infected cells from entering the S phase after serum stimulation. MHV replication inhibited hyperphosphorylation of the retinoblastoma protein (pRb), the event that is necessary for cell cycle progression through late G1 and into the S phase. While the amounts of the cellular cyclin-dependent kinase (Cdk) inhibitors p21Cip1, p27Kip1, and p16INK4a did not change in infected cells, MHV infection in asynchronous cultures induced a clear reduction in the amounts of Cdk4 and G1 cyclins (cyclins D1, D2, D3, and E) in both DBT and 17Cl-1 cells and a reduction in Cdk6 levels in 17Cl-1 cells. Infection also resulted in a decrease in Cdk2 activity in both cell lines. MHV infection in quiescent 17Cl-1 cells prevented normal increases in Cdk4, Cdk6, cyclin D1, and cyclin D3 levels after serum stimulation. The amounts of cyclin D2 and cyclin E were not increased significantly after serum stimulation in mock-infected cells, whereas they were decreased in MHV-infected cells, suggesting the possibility that MHV infection may induce cyclin D2 and cyclin E degradation. Our data suggested that a reduction in the amounts of G1 cyclin-Cdk complexes in MHV-infected cells led to a reduction in Cdk activities and insufficient hyperphosphorylation of pRb, resulting in inhibition of the cell cycle in the G0/G1 phase.  相似文献   

8.
The proliferation rate of mammalian cells is regulated normally in the G1 phase of the cell cycle. During this phase, it is convenient to assign positive and negative roles to the molecular programs that regulate the duration of G1 and the phase transition from G1 to S phase. Density-dependent inhibition of cellular proliferation results in an increase in the duration of G1. This form of regulation is due to both secreted factors and cell—cell contact. Serum is mitogenic to a variety of mammalian cell types. Because quiescent cells enter S phase as a result of serum addition to culture media, serum is usually regarded as a source of positive regulatory growth factors. We have measured the length of the G1, S and G2+ M phases of NIH 3T3 cells during exponential growth as a function of cell density and serum concentration. The G1 length increases during exponential growth as a function of density while S and G2+ M are relatively constant. Further, this increase in G1 phase time, or density mediated negative regulation, is inhibited by increasing serum concentration. This phenotype is saturable between 10% to 20% serum. Serum concentrations above 2.5% are able to increase the rate of cell cycling (decrease the G1 phase time) by inhibiting density dependent negative regulation of NIH 3T3.  相似文献   

9.
The objective of this study was to investigate the differential effects of various selenium (Se) compounds and Se-enriched broccoli extracts on cell proliferation and the possible mechanism responsible for the Se-induced growth inhibition. C6 rat glial cells were incubated with graded concentrations up to 1000 nM of selenite, selenate, selenomethionine (SeM), Se-methyl-selenocysteine (SeMCys), high-Se broccoli (H-SeB) extract or low-Se broccoli (L-SeB) extract for 24 and 48 h. MTT results indicated that all Se sources and levels examined inhibited C6 cell proliferation at 48 h. The results from cell cycle progression and apoptosis analysis indicated that SeM, SeMCys, H-SeB or L-SeB treatments at the concentration of 1000 nM reduced the cell population in G0/G1 phase, but induced G2/M phase arrest and increased apoptosis and secondary necrosis in C6 cells at 24 h. The populations of apoptotic cells and secondary necrotic cells were increased by all Se sources examined. The COMET assay indicated that there was no significant DNA single-strand break found for all Se treatments in C6 cells for 48 h. In addition, the Se-induced proliferation inhibition may involve a hydrogen peroxide (H2O2)-dependent mechanism with elevated cellular glutathione peroxidase (cGPX) activity. Both H-SeB and L-SeB inhibited C6 cell proliferation but H-SeB was less inhibitory than L-SeB. The proliferation inhibition by H-SeB in C6 cells is apparently related to the increased H2O2 with the elevated cGPX activity, but the inhibition by L-SeB was H2O2-independent without change in cGPX activity.  相似文献   

10.
Incorporation of tritiated thymidine into acid-precipitable material was used to measure the rate of DNA synthesis in secondary cultures of human diploid fibroblasts. Confluent cultures of human diploid fibroblasts, which are synchronized in the G1 phase due to contact inhibition, were released from growth inhibition either by the addition of fresh medium to the cultures or by trypsinization and replating at nonconfluent densities. Either treatment resulted in a synchronous wave of DNA synthesis beginning 10–15 h after treatment and peaking at 20–25 h. In confluent cultures stimulated by fresh medium, either the addition of 0.25 mM N6, O2-dibutyryl-adenosine 3',5'-cyclic monophosphate (db-cAMP) to the medium in the interval 4–8 h after stimulation or the replacement of the fresh medium in that same 4 h interval with the depleted medium present on the cells for the 2 day period before stimulation delayed the synchronous onset of DNA synthesis in the cultures by about 4 h. In nonconfluent cultures freshly seeded from trypsinized confluent cultures, this same depleted medium obtained after a 2 day incubation of fresh medium on confluent cultures is shown to support the progress of the cells into S phase; however, the addition of 0.25 mM db-cAMP to the medium 3½ h after replating still partially prevented the initiation of DNA synthesis in the cultures. The results are discussed in terms of the role of serum and cAMP in the control of cell growth in fibroblast cultures.  相似文献   

11.
Effects of retinoic acid (RA) on prostaglandin E2 (PGE2) and cyclic AMP (cAMP) concentrations were investigated in high density, micromass cultures of mesenchymal cells derived from chick limb buds. Exposure of cells during the initial 24 h of culture to RA concentrations between 0.05–1.0 μg/ml inhibited chondrogenesis in a dose-dependent manner with 1.0 μg/ml totally inhibiting cartilage formation. Concentrations of PGE2 and cAMP increased during the prechondrogenic period in control cells in a closely related way and remained elevated throughout the six-day period examined. Addition of RA (0.05 and 0.5 μg/ml) did not significantly alter cAMP concentrations at any time point, but significantly elevated PGE2 levels relative to control cells in six-day cultures in a concentration-dependent manner. Addition of dibutyryl cAMP enhanced chondrogenesis in control cells between days 3 and 4, but failed to alter the inhibitory effect of RA on chondrogenesis. The results indicate that while PGE2 and cAMP are important signals in cartilage differentiation, the inhibitory effects of RA on this process are mediated through some other mechanism.  相似文献   

12.
13.
Our previous studies have implied that prostaglandins inhibit cell growth independent of cAMP. Recent reports, however, have suggested that prostaglandin arrest of the cell cycle may be mediated through protein kinase A. In this report, in order to eliminate the role of c-AMP in prostaglandin mediated cell cycle arrest, we use the-49 lymphoma variant (cyc?) cells that lack adenylate cyclase activity. We demonstrate that dimethyl prostaglandin A1 (dmPGA1) inhibits DNA synthesis and cell growth in cyc? cells. DNA synthesis is inhibited 42% by dmPGA1 (50 μM) despite the fact that this cell line lacks cellular components needed for cAMP generation. The ability to decrease DNA synthesis depends upon the specific prostaglandin structure with the most effective form possessing the α,β unsaturated ketone ring. Dimethyl PGA1 is most effective in inhibiting DNA synthesis in cyc? cells, with prostaglandins PGE1 and PGB1 being less potent inhibitors of DNA synthesis. DmPGE2 caused a significant stimulation of DNA synthesis. S-49 cyc- variant cells exposed to (30–50 μm) dmPGA1, arrested in the G1 phase of the cell cycle within 24 h. This growth arrest was reversed when the prostaglandin was removed from the cultured cells; growth resumed within hours showing that this treatment is not toxic. The S-49 cyc? cells were chosen not only for their lack of adenylate cyclase activity, but also because their cell cycle has been extensively studied and time requirements for G1, S, G2, and M phases are known. Within hours after prostaglandin removal the cells resume active DNA synthesis, and cell number doubles within 15 h suggesting rapid entry into S-phase DNA synthesis from the G1 cell cycle block. The S-49 cyc? cells are known to have a G1/S boundary through M phase transition time of 14.8 h, making the location of the prostaglandin cell cycle arrest at or very near the G1/S interface. The oncogenes, c-fos and c-myc which are normally expressed during G1 in proliferating cells have a 2–3 fold enhanced expression in prostaglandin G1 arrested cells. These data using the S-49 variants demonstrate that dmPGA1 inhibits DNA synthesis and arrests the cell cycle independent of cAMP-mediated effects. The prostaglandin arrested cells maintain the gene expression of a G1 synchronous cell which suggests a unique molecular mechanism for prostaglandin action in arresting cell growth. These properties indicate that this compound may be an effective tool to study molecular mechanisms of regulation of the cell cycle.  相似文献   

14.
Effects of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) on chondrogenesis and concentrations of prostaglandin E2 (PGE2) and cyclic AMP (cAMP) were investigated in micromass cultures of chick limb mesenchyme derived from the distal tip of stage 25 limb buds. TPA completely inhibited Chondrogenesis during the first 4 days of culture; however, a few small cartilage nodules formed by day 6. Relative to control cultures, both PGE2 and cAMP concentrations were altered by TPA treatment during the 6-day period of cell culture. Concentrations of both compounds increased in control cells during the first 24 h of culture and then declined during the remaining 5 days. In TPA-treated cells both PGE2 and cAMP levels increased progressively during the 6 days of cell culture, each being elevated at day 6 by twofold over control cells. The results suggest the presence of regulatory pathways important in Chondrogenesis which occur independent of those initiated by PGE2 and the cAMP system.  相似文献   

15.
Synovial fluid basic calcium phosphate (BCP) crystals are associated with severe destructive arthropathies characterised by synovial proliferation and non-inflammatory degradation of intra-articular collagenous structures. BCP crystals stimulate fibroblast and chondrocyte mitogenesis, metalloprotease secretion and prostaglandin production. As a tissue protective effect of prostaglandins has been suggested, we recently studied the effect of PGE1 on BCP crystal-induced mitogenesis and collagenase mRNA accumulation in human fibroblasts (HF). We demonstrated a dose-dependent inhibition of BCP crystal-induced mitogenesis and collagenase mRNA accumulation. The mechanism of PGE1 inhibition of BCP crystal-induced mitogenesis and collagenase mRNA accumulation was therefore explored. PGE1 (100 ng/ml) increased HF intracellular cAMP 40-fold over control. BCP alone caused no such change but inhibited the PGE1-induced increase in intracellular cAMP by at least 60%. The PGE1-induced increase in intracellular cAMP was also blocked by the adenyl cyclase inhibitor, 2′,5′-dideoxyadenosine (ddA) (10 μM) and ddA reversed the PGE1-mediated inhibition of BCP crystal-induced mitogenesis. Dibutyrul cAMP also inhibited BCP crystal-induced mitogenesis in a concentration-dependent manner. Agents which increase intracellular cAMP levels such as the adenyl cyclase activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) mimicked the effect of PGE1 on HF collagenase mRNA levels. PGE1 inhibits the biologic effects of BCP crystals through the cAMP signal transduction pathway and such inhibition may have significant therapeutic implications.  相似文献   

16.
PGA1 and PGE1 reduced the plating efficiency and inhibited proliferation of Cloudman S-91 murine melanoma cells in a dose dependent manner, as assessed by their effects on colony formation in soft agar. PGF did not reduce plating efficiency but was as effective as PGA1 in raising cAMP and cGMP levels. This data suggests that the inhibition of Cloudman S-91 murine melanoma cell growth occurs via a non-cyclic nucleotide mechanism.  相似文献   

17.
New bone formation is associated with an increase in blood flow by the invasion of capillaries. Endothelial cells that line the capillaries can produce paracrine factors that affect bone growth and development, and in turn, could be affected by products produced by bone cells, in particular the osteoblasts. Since osteoblasts produce prostaglandins E2 and F (PGE2, PGF), it was investigated if these PGs were agonists to bone-derived endothelial cells (BBE) by assessing changes in cAMP and free cytosolic calcium concentration ([Ca2+]i) second messenger generation. We found that confluent cultures of BBE cells, a clonal endothelial cell line derived from bovine sternal bone, responded to 1 μM PGE2 by an increase in cAMP. PGF at the same concentration was less potent in stimulating an increase in cAMP production in confluent BBE cells. Subconfluent cells with a morphology similar to that of fibroblastic cells were not as sensitive to PGE2-stimulated cAMP generation. PGF failed to elicit any cAMP production in subconfluent cultures. PGE2 and PGF both stimulated an increase in [Ca2+]i concentration in a dose-dependent manner. The potency of PGE2 was similar to that of PGF in stimulating an increase in [Ca2+]i. The Ca2+ response was mostly independent of extracellular Ca+, was unchanged even with prior indomethacin treatment, was unaffected by caffeine pretreatment, but was abolished subsequent to thapsigargin pretreatment. The PG-induced increase in [Ca2+]i was also dependent on the confluency of the cells. In a subconfluent state, the responses to PGE2 or PGF were either negligible, or only small increases in [Ca2+]i were noted with high concentrations of these two PGs. Consistent, dose-dependent increases in [Ca2+]i were stimulated by these PGs only when the cells were confluent and had a cobblestoned appearance. Since it was previously demonstrated that BBE cells respond to parathyroid hormone (PTH) by the production of cAMP, we tested if bovine PTH(1-34) amide bPTH(1—34) also increased [Ca2+]i in these cells. No change in [Ca2+]i was found in response to bPTH (1—34), although bPTH (1—34) stimulated a nine to tenfold increase in cAMP. We conclude that BBE cells respond to PGE2 and PGF but not to bPTH(1—34) by an increase in [Ca2+]i probably secondary to stimulation of phospholipase C and that the cAMP and [Ca2+]i second messenger responses in BBE cells are dependent on the state of confluency of the cells. © 1994 Wiley-Liss, Inc.  相似文献   

18.
Prostaglandin E2 (PGE2) is well known to regulate cell functions through cAMP; however, the role of exchange protein directly activated by cAMP (Epac1) and protein kinase A (PKA) in modulating such functions is unknown in human umbilical cord blood‐derived mesenchymal stem cells (hUCB‐MSCs). Therefore, we investigated the relationship between Epac1 and PKA during PGE2‐induced hUCB‐MSC proliferation and its related signaling pathways. PGE2 increased cell proliferation, and E‐type prostaglandin (EP) 2 receptor mRNA expression level and activated cAMP generation, which were blocked by EP2 receptor selective antagonist AH 6809. PGE2 increased Epac1 expression, Ras‐related protein 1 (Rap1) activation level, and Akt phosphorylation, which were inhibited by AH 6809, adenylyl cyclase inhibitor SQ 22536, and Epac1/Rap1‐specific siRNA. Also, PGE2 increased PKA activity, which was inhibited by AH 6809, SQ 22536, and PKA inhibitor PKI. HUCB‐MSCs were incubated with the Epac agonist 8‐pCPT‐cAMP or the PKA agonist 6‐phe‐cAMP to examine whether Epac1/Rap1/Akt activation was independent of PKA activation. 8‐pCPT‐cAMP increased Akt phosphorylation but not PKA activity. 6‐Phe‐cAMP increased PKA activity, but not Akt phosphorylation. Additionally, an Akt inhibitor or PKA inhibitor (PKI) did not block the PGE2‐induced increase in PKA activity or Akt phosphorylation, respectively. Moreover, PGE2 increased glycogen synthase kinase (GSK)‐3β phosphorylation and nuclear translocation of active‐β‐catenin, which were inhibited by Akt inhibitor or/and PKI. PGE2 increased c‐Myc and vascular endothelial growth factor (VEGF) expression levels, which were blocked by β‐catenin siRNA. In conclusion, PGE2 stimulated hUCB‐MSC proliferation through β‐catenin‐mediated c‐Myc and VEGF expression via Epac/Rap1/Akt and PKA cooperation. J. Cell. Physiol. 227: 3756–3767, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Analogs of cyclic adenosine monophosphate (cAMP) (N6benzoyl cAMP and N6monobutyryl cAMP) as well as agents that increased the intracellular level of cAMP (glucagon and isobutylmethylxanthine) inhibited the EGF-stimulated DNA replication of adult rat hepatocytes in primary culture independently of cell density. This inhibition was strongly potentiated by the glucocorticoid dexamethasone. The effect of cAMP (and dexamethasone) was not due to toxicity, because the inhibition was reversible and the cell ultrastructure preserved. cAMP acted by decreasing the rate of transition from G1- to S-phase, the duration of G2- and S-phase of the hepatocyte cell cycle being unaffected. DNA replication started in the extranucleolar compartment of the nucleus and ended in the nucleolar compartment as described earlier for cells grown in the absence of cAMP (O.K. Vintermyr and S.O. Døskeland, J. Cell. Physiol., 1987, 132:12-21). The action of cAMP was very rapid: significant inhibition of the transition was noted 2 hr after the addition of glucagon/IBMX and half-maximal inhibition after 4 hours. The determination of extranucleolarly labelled nuclei in cells pulse-labelled with [3H]thymidine allowed precise analysis of rapid changes in the probability of transition from G1- to S-phase. The extranucleolar labelling index could also be determined in cells continuously exposed to [3H]thymidine.  相似文献   

20.
The effect of 7-fluoro proscyclilin (PGI2-F), a chemically stable analogue of prostacyclin, on cAMP accumulation in and [3H]PGE binding to mastocytoma P-815 cells was compared with those of the Na salt and methyl ester of prostacyclin (PGI2Na or PGI2Me), which are rapidly inactivated in aqueous solution or metabolized in the tissue.PGIF was as effective as PGI2Me, and slightly less effective than PGI2Na in stimulating cAMP accumulation in mastocytoma cells and rabbit platelets. PGI2F was also more stable than PGI2Me or PGI2Na, and retained its original cAMP elevating activity even after incubation with or without cells for 4 h at 37°C. Cells which had been exposed to PGI2F and then washed free of unbound reagent continued to produced cAMP for more than 3 h. PGI2F was also as effective as PGE1 or PGE2 in displacing [3H]PGE2 bound to the cells. Non-competitive inhibition by PGI2F or PGI2Me of [3H]PGE2 binding to the cells, with apparent Kis of 1.29 μM and 1.13 μM, respectively, indicates the presence of different receptors for PGE2 and for PGI2F or PGI2Me in mastocytoma P-815 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号