首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel bioreactor with an internal adsorbent was developed for the simultaneous fermentation and recovery of prodigiosin-like pigment produced from Serratia sp. KH-95 as a model product in one bioreactor. The pigment concentration recovered in the internal adsorbent was 13.1 g l–1, which was 1.8-fold higher than that obtained in a bioreactor with an external adsorbent.  相似文献   

2.
Continuous production of propionate from whey lactose by Propionibacterium acidipropionici immobilized in a novel fibrous bed bioreactor was studied. In conventional batch propionic acid fermentation, whey permeate without nutrient supplementation was unable to support cell growth and failed to give satisfactory fermentation results for over 7 days. However, with the fibrous bed bioreactor, a high fermentation rate and high conversion were obtained with plain whey permeate and de-lactose whey permeate. About 2% (wt/vol) propionic acid was obtained from a 4.2% lactose feed at a retention time of 35 to 45 h. The propionic acid yield was approximately 46% (wt/vol) from lactose. The optimal pH for fementation was 6.5, and lower fermentation rates and yields were obtained at lower pH values. The optimal temperature was 30 degrees C, but the temperature effect was not dramatic in the range of 25 to 35 degrees C. Addition of yeast extract and trypticase to whey permeate hastened reactor startup and increased the fermentation rate and product yields, but the addition was not required for long-term reactor performance. The improved fermentation results with the immobilized cell bioreactor can be attributed to the high cell density, approximately 50 g/L, attained in the bioreactor, Cells were immobilized by loose attachement to fiber surfaces and entrapment in the void spaces within the fibrous matrix, thus allowing constant renewal of cells. Consequently, this bioreactor was able to operate continuously for 6 months without encountering any clogging, degeneration, or contamination problems. Compared to conventional batch fermentors, the new bioreactor offers many advantages for industrial fermentation, including a more than 10-fold increase in productivity, acceptance of low-nutrient feedstocks such as whey permeate, and resistance to contamination. (c) 1994 John Wiley & Sons, Inc.  相似文献   

3.
This paper is dedicated to the study on external and internal mass transfers of glucose for succinic fermentation under substrate and product inhibitions using a bioreactor with a stationary basket bed of immobilized Actinobacillus succinogenes cells. By means of the substrate mass balance for a single particle of biocatalysts, considering the Jerusalimsky kinetic model including both inhibitory effects, specific mathematical expressions have been developed for describing the profiles of the substrate concentrations and mass flows in the outer and inner regions of biocatalyst particles, as well as for estimating the influence of internal diffusion on glucose consumption rate. The results indicated that very low values of internal mass flow could be reached in the particles center. The corresponding region was considered biologically inactive, with its extent varying from 0.24% to 44% from the overall volume of each biocatalyst. By immobilization of bacterial cells and use of a basket bed, the rate of glucose consumption is reduced up to 200 times compared with the succinic fermentation system containing free cells.  相似文献   

4.
Hydrolysate of Jerusalem artichoke was applied for the production of l-lactic acid by immobilized Lactococcus lactis cells in a fibrous bed bioreactor system. Preliminary experiments had indicated that the high quality hydrolysate, which was derived from the 40min acid treatment at 95°C and pH 1.8, was sufficient to support the cell growth and synthesis of l-lactic acid. With the addition of 5g/l yeast extract, the fermentative performance of free cell system was evidently improved. After the basal settlement of hydrolysate based fermentation, the batch mode and the fed-batch mode fermentation were carried out in the free cell system and the fibrous bed bioreactor system, respectively. In all cases the immobilized cells presented the superior ability to produce l-lactic acid. The comparison of batch mode and fed-batch mode also indicated that the growth-limiting feeding strategy could reduce the lag phase of fermentation process and enhance the production of l-lactic acid. The achieved maximum concentration of l-lactic acid was 142g/l in the fed-batch mode. Subsequent repeated-batch fermentation of the fibrous bed bioreactor system had further exhibited the persistence and stability of this system for the high production of l-lactic acid in a long term. Our work suggested the great potential of the fibrous bed bioreactor system and hydrolysate of J. artichoke in the economical production of l-lactic acid at industrial scale.  相似文献   

5.
In situ adsorption, known as an in situ-roduct removal (ISPR) technique for low molecular mass bioproducts, was in this study applied to a bacterial exoenzyme proving that this method is also suitable for the separation of macromolecules like proteins. For this, adsorbent particles were added to growing cultures of Staphylococcus carnosus rec., therefore both production and adsorption occurred simultaneously in shaking flasks, stirred tank, or airlift bioreactor as the chosen types of fermenters. The exoenzyme lipase adsorbed rapidly and, after separating cells and adsorbents, desorbed in a packed bed column. Up to 85% of the produced lipase were recovered, fractions of these had been concentrated up to the factor 20 and purified up to a factor of 40 by the procedure. By using the airlift bioreactor an enhancement of biomass production was observed, but the necessity of the addition of an anti-foam reagent resulted in higher product losses in adsorption as well as in desorption. Production and adsorption kinetics have been modeled and applied to in situ-adsorption. The model was used to perform a parameter study in which the influence of biological and physical parameters as well as process parameters on discontinuous and continuous in situ-adsorption was investigated.  相似文献   

6.
Economically viable biopharmaceutical production is to a high degree dependent on high product yields and stable fermentation systems that are easy to handle. In the current study we have compared two different fermentation systems for the production of recombinant protein from CHO cells. Both systems are fully scaleable and can be used for industrial high cell density bioprocesses. As a model cell line we have used a recombinant CHO cell line producing the enzyme arylsulfatase B (ASB). CHO cells were cultivated as adherent cell culture attached on Cytoline macroporous microcarrier (Amersham Biosciences, Sweden) using a Cytopilot Mini fluidized bed bioreactor (FBR, Vogelbusch-Amersham Biosciences, Austria) and as suspension culture using a stirred tank bioreactor equipped with a BioSep ultrasonic resonator based cell separation device (Applikon, The Netherlands). Both systems are equally well-suited for stable, long-term high cell density perfusion cell culture and provide industrial scalability and high yields. For products such as the recombinant ASB, high perfusion rates and therefore short product bioreactor residence times may be of additional benefit.  相似文献   

7.
Abstract

Vitamin B12 and propionic acid that were simultaneous produced by Propionibacterium freudenreichii are both favorable chemicals widely used in food preservatives, medicine, and nutrition. While the carbon source and propionic acid accumulation reflected fermentation efficiency. In this study, using corn stalk as a carbon source and fed-batch fermentation process in an expanded bed adsorption bioreactor was studied for efficient and economic biosynthesis of acid vitamin B12 and propionic. With liquid hot water pretreated corn stalk hydrolysates as carbon source, 28.65?mg L?1 of vitamin B12 and 17.05?g L?1 of propionic acid were attained at 168?h in batch fermentation. In order to optimize the fermentation outcomes, fed-batch fermentation was performed with hydrolyzed corn stalk in expanded bed adsorption bioreactor (EBAB), giving 47.6?mg L?1 vitamin B12 and 91.4?g L?1 of propionic acid at 258?h, which correspond to product yields of 0.37?mg g?1 and 0.75?g g?1, respectively. The present study provided a promising strategy for economically sustainable production of vitamin B12 and propionic acid by P. freudenreichii fermentation using biomass cornstalk as carbon source and expanded bed adsorption bioreactor.  相似文献   

8.
The experimental apparatus for the simultaneous L-lactic acid fermentation by Rhizopus oryzae immobilized in calcium alginate beads and product separation process was set up in which a three-phase fluidized-bed bioreactor was used as a fermentor and an external electrodialyzer as a separator, and a pump was applied to recycle the fermentation broth between the bioreactor and the separator. The L-lactic acid produced in the fermentor was separated in the separator, product inhibition was alleviated without any addition of alkali or alkali salts and the product purification process could be simplified. The specific productivity and the yield in electrodialysis fermentation (ED-F) process operated in continuous feeding mode were almost the same as that in CaCO3-buffered fermentation process. A mathematical model of L-lactic acid production in ED-F process was also suggested, in which the model equations for the bioreactor and the electrodialyzer were combined to describe the simultaneous fermentation and product separation. The model predictions were in good agreement with the experimental data.  相似文献   

9.
A mathematical model is developed to simulate oxygen consumption, heat generation and cell growth in solid state fermentation (SSF). The fungal growth on the solid substrate particles results in the increase of the cell film thickness around the particles. The model incorporates this increase in the biofilm size which leads to decrease in the porosity of the substrate bed and diffusivity of oxygen in the bed. The model also takes into account the effect of steric hindrance limitations in SSF. The growth of cells around single particle and resulting expansion of biofilm around the particle is analyzed for simplified zero and first order oxygen consumption kinetics. Under conditions of zero order kinetics, the model predicts upper limit on cell density. The model simulations for packed bed of solid particles in tray bioreactor show distinct limitations on growth due to simultaneous heat and mass transport phenomena accompanying solid state fermentation process. The extent of limitation due to heat and/or mass transport phenomena is analyzed during different stages of fermentation. It is expected that the model will lead to better understanding of the transport processes in SSF, and therefore, will assist in optimal design of bioreactors for SSF.  相似文献   

10.
Design of fluidized-bed fermentors   总被引:1,自引:0,他引:1  
Designing a fluidized-bed bioreactor requires choosing the best support particle (if any). Effectiveness factors (proportional to reactor volumetric productivity) are derived for flocs, solid spherical supports, porous supports, and adsorbent supports. The derivation demonstrates a mathematical procedure for reducing the diffusion/uptake equations for many components (substrates and inhibitory products) to a single equation, and for identifying the limiting component. With solid supports there exists a film thickness that maximizes the effectiveness, and the design objective is to keep the film near this optimum throughout the bed. This involves consideration of the effect of support particle density and film growth on bed stratification. Other considerations in picking support particles are obtaining reasonable values for bed height and diameter, minimizing mass transfer resistance between liquid and biomass, and preventing surface shear from stripping off the biomass.  相似文献   

11.
An upflow packed-bed cell recycle bioreactor (IUPCRB) is proposed for obtaining a high cell density. The system is comprised of a stirred tank bioreactor in which cells are retained partially by a packed-bed. A 1.3 cm (ID) × 48 cm long packed-bed was installed inside a 2 L bioreactor (working volume 1 L). Continuous ethanol fermentation was carried out using a 100 g/L glucose solution containing Saccharomyces cerevisiae (ATCC 24858). Cell retention characteristics were investigated by varying the void fraction (VF) of the packed bed by packing it with particles of 0.8∼2.0 mm sized stone, cut hollow fiber pieces, ceramic, and activated carbon particles. The best results were obtained using an activated carbon bed with a VF of 30∼35%. The IUPCRB yielded a maximum cell density of 87 g/L, an ethanol concentration of 42 g/L, and a productivity of 21 g/L/h when a 0.5 h−1 dilution rate was used. A natural bleeding of cells from the filter bed occurred intermittently. This cell loss consisted of an average of 5% of the cell concentration in the bioreactor when a high cell concentration (approximately 80 g/L) was being maintained.  相似文献   

12.
利用固定化米根霉在三相流化床中发酵生成L-乳酸   总被引:6,自引:0,他引:6  
用聚氨酯泡沫吸附固定米根霉菌丝,在三相流化床中对葡萄糖、木糖以及木糖渣的纤维素酶解液等不同碳源进行L-乳酸发酵研究,并对游离菌丝和固定化菌丝发酵L-乳酸进行了比较。结果表明,聚氨酯泡沫是米根霉的良好载体,具有经济、高效等特点。实验条件下,不同碳源的乳酸转化率分别为:葡萄糖,82.5%;木糖,53.8%;木糖渣酶水解液,71.9%。三相流化床中固定化米根霉产酸速率(对葡萄糖)为19.1g.h^-1.  相似文献   

13.
Scalability is a major demand for high-yield, stable bioprocess systems in animal cell culture-based biopharmaceutical production. Increased yields can be achieved through high-density cell culture, such as in the combination of microcarrier and fluidized bed bioreactor technology. To minimize inocula volume in industrial applications of fluidized bed fermentation systems, it is crucial to increase the bed volume in the reactor during the fermentation process. We tested scale-up strategy for the production of recombinant human arylsulfatase B (ASB) enzyme used in enzyme replacement therapy in patients afflicted with mucopolysaccharidosis type VI (MPS VI). This enzyme was derived from Chinese hamster ovary (CHO) cells cultivated as adherent cell culture on Cytoline macroporous microcarriers (Amersham Biosciences, Uppsala, Sweden) using a Cytopilot Mini fluidized bed bioreactor (FBR; Amersham Biosciences, Vogelbusch, Austria). Both 1:2 expansion (herein referred to as the addition of fresh, not-yet-colonized microcarriers) and 1:6 expansion of the carrier bed were performed successfully; the cells restarted to proliferate for colonizing these newly added carriers; and the stability of the culture was not negatively affected.  相似文献   

14.
Although butanol is a promising biofuel, its fermentative production suffers from inhibition caused by end product toxicity. The in situ removal of butanol from cultures via expanded bed adsorption offers an effective strategy for mitigating the effects of product toxicity while eliminating the need to clarify cultures via microfiltration. The hydrophobic polymer resin Dowex Optipore L‐493 was found to be both an effective butanol adsorbent and suitable for use in expanded bed adsorption. Recirculation rates through the adsorption column were strongly correlated with and ultimately controlled rates of butanol uptake from the media which, reaching as high as 41.1 g/L h, easily exceed those of its production in a typical fermentation. Vacuum application with vapor collection was found to be an effective means of adsorbent regeneration, with an average of 81% butanol recovery possible, with butanol concentrations in the cold trap reaching as high as 85.8 g/L. Integration of expanded bed adsorption with a fed‐batch Clostridium acetobutylicum ATCC 824 fermentation and its continuous operation for 38.5 h enabled the net production (i.e., in solution and adsorbed) of butanol and total solvent products at up to 27.2 and 40.7 g/L of culture, respectively, representing 2.2‐ and 2.3‐fold improvements over conventional batch culture. While adsorbent biofouling was found to be minimal, further investigation of biofouling in longer‐term studies will provide useful and further insight regarding the robustness of the process strategy. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:68–78, 2014  相似文献   

15.
This paper is dedicated to the study on the external and internal mass transfers of glucose for succinic acid fermentation under substrate and product inhibitions using a bioreactor with stirred bed of immobilized Actinobacillus succinogenes cells. By means of the substrate mass balance for a single particle of biocatalysts, considering the kinetic model adapted for both inhibitory effects, specific mathematical models were developed for describing the profiles of the substrate concentration in the outer and inner regions of biocatalysts and for estimating the substrate mass flows in the liquid boundary layer surrounding the particle and inside the particle. The values of the mass flows were significantly influenced by the internal diffusion velocity and rate of the biochemical reaction of substrate consumption. These cumulated influences led to the appearance of a biological inactive region near the particle center, its magnitude varying from 0 to 5.3% of the overall volume of particles.  相似文献   

16.
Malic acid is a dicarboxylic acid widely used in the food industry and also a potential C4 platform chemical that can be produced from biomass. However, microbial fermentation for direct malic acid production is limited by low product yield, titer, and productivity due to end‐product inhibition. In this work, a novel process for malic acid production from polymalic acid (PMA) fermentation followed by acid hydrolysis was developed. First, a PMA‐producing Aureobasidium pullulans strain ZX‐10 was screened and isolated. This microbe produced PMA as the major fermentation product at a high‐titer equivalent to 87.6 g/L of malic acid and high‐productivity of 0.61 g/L h in free‐cell fermentation in a stirred‐tank bioreactor. Fed‐batch fermentations with cells immobilized in a fibrous‐bed bioreactor (FBB) achieved the highest product titer of 144.2 g/L and productivity of 0.74 g/L h. The fermentation produced PMA was purified by adsorption with IRA‐900 anion‐exchange resins, achieving a ~100% purity and a high recovery rate of 84%. Pure malic acid was then produced from PMA by hydrolysis with 2 M sulfuric acid at 85°C, which followed the first‐order reaction kinetics. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application. Biotechnol. Bioeng. 2013; 110: 2105–2113. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Ca-alginate matrix was used to co-immobilize Saccharomyces bayanus and Leuconostoc oenos in one integrated biocatalytic system in order to perform simultaneously alcoholic and malo-lactic fermentation of apple juice to produce cider, in a continuous packed bed bioreactor. The continuous process permitted much faster fermentation compared with the traditional batch process. The flavor formation was also better controlled. By adjusting the flow rate of feeding substrate through the bioreactor, i.e. its residence time, it was possible to obtain either “soft” or “dry” cider. However, the profile of volatile compounds in the final product was modified comparatively to the batch process, especially for higher alcohols, isoamylacetate, and diacetyl. This modification is due to different physiology states of yeast in two processes. Nevertheless, the taste of cider was quite acceptable.  相似文献   

18.
采用海藻酸钙包埋法固定化米根霉(Rhizopusoryzae),菌体在颗粒表面形成一层菌丝膜,有利于氧气和其它营养物质的传递;三相流化床生物反应器结构简单、动力消耗低、反应器内物质混合均匀、氧传递量大于固定化米根霉的需氧量,非常适合好氧的固定化米根霉发酵。利用它进行重复使用固定化米根霉的间歇发酵或连续发酵制备L 乳酸,整个过程一般可持续两周以上。固定化米根霉的产酸速率达16~18g/L bead.hr,得率为70~80%,反应器生产能力约为传统搅拌罐的3倍。采用海藻酸钙包埋法固定化米根霉在三相流化床生物反应器中进行发酵可以有效地提高L 乳酸的生产效率,具有良好的工业应用前景。  相似文献   

19.
Continuous culture may be an efficient way of producing proteins which are susceptible to secondary processing in the course of a fermentation process. Short residence times in these systems support the production of correctly assembled proteins by avoiding substrate limitations and product inhibitions and also minimize the contact of sensitive bioproducts with degrading enzymes. Thus products of increased stability and integrity are obtained from continuous processes. The downstream process following continuous culture has to be adapted to the specific conditions of continuous fermentations, e.g. large liquid volumes and diluted process solutions. In this paper an approach is shown how a fluidized bed adsorption as first recovery operation may be coupled directly to a continuous production. Immobilized hybridoma cells are cultivated in porous glass microcarriers in a continuous fluidized bed process, the cell containing harvest is purified by fluidized bed adsorption using an agarose based cation exchange matrix. By this coupled mode of operation the large biomass containing harvest volume resulting from the continuous cultivation may be applied directly to a fluidized chromatographic matrix without prior clarification, leading to a particle free and initially purified product solution of reduced volume. In an experimental setup a bench-scale fluidized bed bioreactor of 25 ml carrier volume was coupled to a fluidized bed adsorption column operated with 300 ml of adsorbent. This configuration yielded up to 20 mg of monoclonal antibody per day in a cell free solution at fourfold concentration and fivefold purification. The process was run for more than three weeks with consistent product output.The help of H. Schmitz, A. Bader, J. Gätgens and M. Halfar during the experiments is gratefully acknowledged. This work was partially funded by the ministry of science and research of the Federal Republic of Germany within the project Stoffumwandlung mit Biokatalysatoren.  相似文献   

20.
Solid substrate fermentation at Biocon was originally envisaged for the production of enzymes, used in the food processing industry. The original process developed at Biocon was a hygienically designed automated tray culture process. Plants using this process still continue to run effectively at Biocon, and produce a variety of products meeting and exceeding FCC/JECFA specifications for food products. Biocon recently designed, developed and patented a new bioreactor, the PlaFractor™ (pronounced play-fractor) for carrying out fermentations that use solid matrices—a term covering both nutritive support matrices as well as non-nutritive matrices impregnated with medium.Using the PlaFractor™ process it is now possible to extend the use of solid matrix fermentation for the production of enzymes, biocontrol agents and pharmaceutical products, that require elaborate containment—under precisely defined conditions. The production takes place in computer controlled bioreactors, using complex fermentation control algorithms. All the operations of solid matrix fermentation, i.e. sterilization, cooling, inoculation, fermentation and process control, product recovery and post-fermentation sterilization, are all done in one single equipment, which was not hitherto possible. All the advantages of traditional solid state fermentation, over submerged fermentation, like low energy consumption, low water requirement, high mass transfer coefficient, no foaming, and high product concentrations are retained. In addition, techniques that are important to submerged fermentation, like fed-batch fermentation, process parameter profiling, air and media sterilization, operation under aseptic environments, and ease of handling, can now be easily applied to solid state fermentation, because of the way this bioreactor is designed.A production plant, built around this bioreactor has already been operating for more than a year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号