首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine whether a test developed to predict maximal oxygen consumption (VO2max) during over-ground walking, was similarly valid as a predictor of peak oxygen consumption (VO2) when administered during a 1-mile (1.61 km) treadmill walk. Treadmill walk time, mean heart rate over the last 2 full min of the walk test, age, and body mass were entered into both generalized (GEN Eq.) and gender-specific (GSP Eq.) prediction equations. Overall results indicated a highly significant linear relationship between observed peak VO2 and GEN Eq. predicted values (r = 0.91), a total error (TE) of 5.26 ml.kg-1.min-1 and no significant difference between observed and predicted peak VO2 mean values. The peak VO2 for women (n = 75) was predicted accurately by GSP Eq. (r = 0.85; TE = 4.5 ml.kg-1.min-1), but was slightly overpredicted by GEN Eq. (overall mean difference = 1.4 ml.kg-1.min-1; r = 0.86; TE = 4.56 ml.kg-1.min-1). No significant differences between observed peak VO2 and either GEN Eq. (r = 0.85; TE = 4.3 ml.kg-1.min-1) or GSP Eq. (r = 0.85; TE = 4.8 ml.kg-1.min-1) predicted values were noted for men (n = 48) with peak VO2 values less than or equal to 55 ml.kg-1.min-1. However, both equations significantly underpredicted peak VO2 for the remaining high peak VO2 men (n = 22). In conclusion, the over-ground walking test, when administered on a treadmill, is a valid method of predicting peak VO2 but underpredicts peak VO2 of subjects with observed high peak VO2 values.  相似文献   

2.
To investigate the effect of endurance training on physiological characteristics during circumpubertal growth, eight young runners (mean starting age 12 years) were studied every 6 months for 8 years. Four other boys served as untrained controls. Oxygen uptake (VO2) and blood lactate concentrations were measured during submaximal and maximal treadmill running. The data were aligned with each individual's age of peak height velocity. The maximal oxygen uptake (VO2max; ml.kg-1.min-1) decreased with growth in the untrained group but remained almost constant in the training group. The oxygen cost of running at 15 km.h-1 (VO2 15, ml.kg-1.min-1) was persistently lower in the trained group but decreased similarly with age in both groups. The development of VO2max and VO2 15 (l.min-1) was related to each individual's increase in body mass so that power functions were obtained. The mean body mass scaling factor was 0.78 (SEM 0.07) and 1.01 (SEM 0.04) for VO2max and 0.75 (SEM 0.09) and 0.75 (SEM 0.02) for VO2 15 in the untrained and trained groups, respectively. Therefore, expressed as ml.kg-0.75.min-1, VO2 15 was unchanged in both groups and VO2max increased only in the trained group. The running velocity corresponding to 4 mmol.l-1 of blood lactate (nu la4) increased only in the trained group. Blood lactate concentration at exhaustion remained constant in both groups over the years studied. In conclusion, recent and the present findings would suggest that changes in the oxygen cost of running and VO2max (ml.kg-1.min-1) during growth may mainly be due to an overestimation of the body mass dependency of VO2 during running.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
In order to validate the "Maximal Multistage 20 Meter Shuttle Run Test" by Leger and Lambert (1982) (20-MST) as an estimate of maximal aerobic power (VO2max) and to compare the results of this test with the results of a 6 min endurance run, 82 subjects (41 boys and 41 girls) aged 12-14 performed the 20-MST and the 6 min endurance run, and had their VO2max directly measured during maximal treadmill running. The 20-MST is a maximal running test starting at a running speed of 8.0 km X h-1, which is increased every minute and in which the pace is set by an audio signal. Performing the test, one runs a 20-meter course back and forth. The test result is expressed as "palier" (one palier is approximately one minute). The mean results of the 20-MST were, for boys, 8.0 palier (+/- 1.7) and for girls, 6.4 palier (+/- 1.5). The mean results of the 6 min endurance run were for boys, 1264.4 meters (+/- 160.8), and for girls, 1103.9 meters (+/- 144.7). The mean VO2max for boys was 53.2 ml X kg-1 X min-1 (+/- 5.4) and for girls, 44.1 (+/- 4.8) ml X kg-1 X min-1. The correlation coefficient between VO2max and the 20-MST was found to be 0.68 (+/- 3.9) for boys, 0.69 (+/- 3.4) for girls and 0.76 (+/- 4.4) for both sexes, and that of VO2max with the 6 min endurance run was 0.51 (+/- 4.6) for boys, 0.45 (+/- 4.3) for girls and 0.63 (+/- 5.3) for both sexes. The conclusion is that the 20-MST is a suitable tool for the evaluation of maximal aerobic power. Although the differences in validity between the 20-MST and the 6 minutes endurance run were statistically not significant (p greater than 0.05), for reasons of practicability the 20-MST should be preferred to the 6 minutes endurance run when used in physical education classes.  相似文献   

5.
This paper examines current concepts concerning "limiting" factors in human endurance performance by modeling marathon running times on the basis of various combinations of previously reported values of maximal O2 uptake (VO2max), lactate threshold, and running economy in elite distance runners. The current concept is that VO2max sets the upper limit for aerobic metabolism while the blood lactate threshold is related to the fraction of VO2max that can be sustained in competitive events greater than approximately 3,000 m. Running economy then appears to interact with VO2max and blood lactate threshold to determine the actual running speed at lactate threshold, which is generally a speed similar to (or slightly slower than) that sustained by individual runners in the marathon. A variety of combinations of these variables from elite runners results in estimated running times that are significantly faster than the current world record (2:06:50). The fastest time for the marathon predicted by this model is 1:57:58 in a hypothetical subject with a VO2max of 84 ml.kg-1.min-1, a lactate threshold of 85% of VO2max, and exceptional running economy. This analysis suggests that substantial improvements in marathon performance are "physiologically" possible or that current concepts regarding limiting factors in endurance running need additional refinement and empirical testing.  相似文献   

6.
There are conflicting reports in the literature which imply that the decrement in maximal aerobic power experienced by a sea-level (SL) resident sojourning at high altitude (HA) is either smaller or larger for the more aerobically "fit" person. In the present study, data collected during several investigations conducted at an altitude of 4300 m were analyzed to determine if the level of aerobic fitness influenced the decrement in maximal oxygen uptake (VO2max) at HA. The VO2max of 51 male SL residents was measured at an altitude of 50 m and again at 4300 m. The subjects' ages, heights, and weights (mean +/- SE) were 22 +/- 1 yr, 177 +/- 7 cm and 78 +/- 2 kg, respectively. The subjects' VO2max ranged from 36 to 60 ml X kg -1 X min -1 (mean +/- SE = 48 +/- 1) and the individual values were normally distributed within this range. Likewise, the decrement in VO2max at HA was normally distributed from 3 ml X kg-1 X min-1 (9% VO2max at SL) to 29 ml X kg-1 X min-1 (54% VO2max at SL), and averaged 13 +/- 1 ml X kg-1 X min-1 (27 +/- 1% VO2max at SL). The linear correlation coefficient between aerobic fitness and the magnitude of the decrement in VO2max at HA expressed in absolute terms was r = 0.56, or expressed as % VO2max at SL was r = 0.30; both were statistically significant (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The role of anaerobic ability in middle distance running performance   总被引:5,自引:0,他引:5  
The purpose of this study was to assess the relationship between anaerobic ability and middle distance running performance. Ten runners of similar performance capacities (5 km times: 16.72, SE 0.2 min) were examined during 4 weeks of controlled training. The runners performed a battery of tests each week [maximum oxygen consumption (VO2max), vertical jump, and Margaria power run] and raced 5 km three times (weeks 1, 2, 4) on an indoor 200-m track (all subjects competing). Regression analysis revealed that the combination of time to exhaustion (TTE) during the VO2max test (r2 = 0.63) and measures from the Margaria power test (W.kg-1, r2 = 0.18; W, r2 = 0.05) accounted for 86% of the total variance in race times (P less than 0.05). Regression analysis demonstrated that TTE was influenced by both anaerobic ability [vertical jump, power (W.kg-1) and aerobic capacity (VO2max, ml.kg-1.min-1)]. These results indicate that the anaerobic systems influence middle distance performance in runners of similar abilities.  相似文献   

8.
9.
The purpose of this study was to investigate the physical activity levels in eleven 9-10 year old boys with reference to aerobic power or lactate threshold (LT). Daily physical activity levels were evaluated from a HR monitoring system for 12 h on three different days. VO2max, VO2-HR relationship and LT were determined by the progressive treadmill test. LT was 36.7 +/- 3.1 ml X kg-1 X min-1 and 71.0 +/- 6.6% VO2max. Mean total time of activities with HR above the level corresponding to 60% VO2max (T-60%) and that above LT (T-LT) were 34 +/- 7 and 18 +/- 7 min, respectively. VO2max (ml X kg-1 X min-1) correlated significantly with T-60% (p less than 0.01), while no significant relationship was found with LT in ml X kg-1 X min-1. In conclusion, longer daily physical activities at moderate to higher intensity for preadolescent children seem to increase VO2max rather than LT.  相似文献   

10.
The response of runners to arduous triathlon competition   总被引:1,自引:0,他引:1  
As very few of the competitors in a triathlon are truly specialist in more than one of the three disciplines, high levels of physical (and mental) stress may result during the course of the event. We investigated some of the physiological responses occurring in runners participating in an "Iron Man" triathlon consisting of canoeing (20 km), cycling (90 km) and running (42 km), in that sequence. Twenty-one male entrants volunteered as subjects for the study. Prior to the competition, maximal oxygen consumption (VO2max) was determined. Basal venous blood samples were collected on the day prior to the competition and post-exercise venous blood samples were collected within 5 minutes of completion of the race. Serum iron was significantly reduced from a mean basal value of 20.6 mumol X l-1 to a mean value of 8.4 mumol X l-1 after the race. Cortisol levels showed a 3 fold increase after the race. Gross VO2max (l X min-1) and mass standardised VO2max (ml X min-1 X kg-1) were both negatively correlated to cortisol levels after the race (p less than 0.05). Total performance time was not related to gross VO2max (l X min-1) but was well correlated to mass corrected VO2max (ml X min-1 X kg-1). The marked fall in serum iron may have been related to heavy sweating or prelatent iron deficiency. Chronic iron deficiency (without frank anaemia) can impair physical performance, although we were unable to show any significant correlation between serum iron level after the race and time taken to complete the event.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Ventilation threshold (VET) and peak O2 uptake (VO2max) were determined annually from ages 11 to 15 yr in 18 athletic boys. The treadmill protocol consisted of a constant-run speed with grade increments every second minute. Ventilation, VO2, and CO2 production were measured using online open-circuit spirometry. Coefficients of variation for determination of VO2max and VET were 3.4 and 5.6%, respectively. VO2max increased across age 11-15 yr, from 60.8 to 68.0 ml X kg-1 X min-1. VET at 11 yr was 34.4 and at 15 yr 41.9 ml X kg-1 X min-1, thus increasing from 56 to 62% of VO2max. Previous studies of children have shown a decline of VET relative to VO2max across age; however, in the present study the increase may have been due to the training of the boys in competitive athletics. However, the trained youth did not achieve the high relative threshold of trained adults. Across age, both VO2max and VET scaled to weight to the power 1 (in a log-log transformation). The increase in VO2max (l/min) showed greatest increments corresponding to gains in size (a growth curve), whereas increases of VET were consistent year to year. Thus VET was altered independently of VO2max. Factors other than size (and presumably muscle mass) such as the maturation of an enzymatic profile of fast glycolytic fibers might have an important influence on the threshold during youth.  相似文献   

12.
Longitudinal alterations in anaerobic threshold (AT) and distance running performance were assessed three times within a 4-month period of intensive training, using 20 male, trained middle-distance runners (19-23 yr). A major effect of the high intensity regular intensive training together with 60- to 90-min AT level running training (2 d X wk-1) was a significant increase in the amount of O2 uptake corresponding to AT (VO2 AT; ml O2 X min-1 X kg-1) and in maximal oxygen uptake (VO2max; ml O2 X min-1 X kg-1). Both VO2 AT and VO2max showed significant correlations (r = -0.69 to -0.92 and r = -0.60 to -0.85, respectively) with the 10,000 m run time in every test. However, further analyses of the data indicate that increasing VO2 AT (r = -0.63, P less than 0.05) rather than VO2max (r = -0.15) could result in improving the 10,000 m race performance to a larger extent, and that the absolute amount of change (delta) in the 10,000 m run time is best accounted for by a combination of delta VO2 AT and delta 5,000 m run time. Our data suggest that, among runners not previously trained over long distances, training-induced alterations in AT in response to regular intensive training together with AT level running training may contribute significantly to the enhancement of AT and endurance running performance, probably together with an increase in muscle respiratory capacity.  相似文献   

13.
To determine why black distance runners currently out-perform white distance runners in South Africa, we measured maximum oxygen consumption (VO2max), maximum workload during a VO2max test (Lmax), ventilation threshold (VThr), running economy, inspiratory ventilation (VI), tidal volume (VT), breathing frequency (f) and respiratory exchange ratio (RER) in sub-elite black and white runners matched for best standard 42.2 km marathon times. During maximal treadmill testing, the black runners achieved a significantly lower (P less than 0.05) Lmax (17 km h-1, 2% grade, vs 17 km h-1, 4% grade) and VI max (6.21 vs 6.82 l kg-2/3 min-1), which was the result of a lower VT (101 vs 119 ml kg-2/3 breath-1) as fmax was the same in both groups. The lower VT in the black runners was probably due to their smaller body size. The VThr occurred at a higher percentage VO2max in black than in white runners (82.7%, SD 7.7% vs 75.6%, SD 6.2% respectively) but there were no differences in the VO2max. However, during a 42.2-km marathon run on a treadmill, the black athletes ran at the higher percentage VO2max (76%, SD 7.9% vs 68%, SD 5.3%), RER (0.96, SD 0.07 vs 0.91, SD 0.04) and f (56 breaths min-1, SD 11 vs 47 breaths min-1, SD 10), and at lower VT (78 ml kg-2/3 breath-1, SD 15 vs 85 ml kg-2/3 breath-1, SD 19). The combination of higher f and lower VT resulted in an identical VI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Ten men and 11 women were studied to determine the effect of experimentally equating haemoglobin concentration ([Hb]) on the sex difference in maximal oxygen uptake (VO2max). VO2max was measured on a cycle ergometer using a continuous, load-incremented protocol. The men were studied under two conditions: 1) with normal [Hb] (153 g X L-1) and 2) two days following withdrawal of blood, which reduced their mean [Hb] to exactly equal the mean of the women (134 g X L-1). Prior to blood withdrawal, VO2max expressed in L X min-1 and relative to body weight and ride time on the cycle ergometer test were greater (p less than .01) in men by 1.11 L X min-1 (47%), 4.8 ml X kg-1 min-1 (11.5%) and 5.9 min (67%), respectively, whereas VO2max expressed relative to fat-free weight (FFW) was not significantly different. Equalizing [Hb] reduced (p less than .01) the mean VO2max of the men by 0.26 L X min-1 (7.5%), 3.2 ml X kg-1 min-1 (6.9%) or 4.1 ml X kg FFW-1 min-1 (7.7%), and ride time by 0.7 min (4.8%). Equalizing [Hb] reduced the sex difference for VO2max less than predicted from proportional changes in the oxygen content of the arterial blood and arteriovenous oxygen content difference during maximal exercise. It was concluded that the sex difference in [Hb] accounts for a significant, but relatively small portion of the sex difference in VO2max (L X min-1). Other factors such as the dimensions of the oxygen transport system and musculature are of greater importance.  相似文献   

15.
The effects of 64 h of sleep deprivation upon cardiorespiratory function was studied in 11 young men (VO2max = 55.5 ml kg-1 min-1, STPD). Six subjects engaged in normal sedentary activities, while the others walked on a treadmill at 28% VO2max for one hour in every three; eight weeks later, sleep deprivation was repeated with a crossover of subjects. Immediate post-deprivation measurement of VO2max showed a small but statistically significant decrease (-3.8 ml min-1 kg-1, STPD), with no difference between exercise and control trials. The final decrement in aerobic power was not due to a loss of motivation, as 88% (21 of 24) of post-deprivation tests still showed a plateau of VO2max; in addition, terminal heart rates (198 vs 195 beats min-1), respiratory exchange ratios (1.14 vs 1.15) and blood lactate levels (12.1 vs 11.8 mmol l-1) were not significantly different after sleep deprivation. The decrease in VO2max was associated with a lower VEmax (127 vs 142 l min-1, BTPS) and a substantial haemodilution (13%). Physiological responses to sub-maximal exercise showed persistence of the normal diurnal rhythm in heart rate and oxygen consumption, with no added effects due to sleep deprivation. However, ratings of perceived exertion (Borg scale) increased significantly throughout sleep deprivation. The findings are consistent with a mild respiratory acidosis, secondary to reduced cortical arousal and/or a progressive depletion of tissue glycogen stores which are not altered appreciably by moderate physical activity.  相似文献   

16.
Recent evidence suggests that heavy exercise may lower the percentage of O2 bound to hemoglobin (%SaO2) by greater than or equal to 5% below resting values in some highly trained endurance athletes. We tested the hypothesis that pulmonary gas exchange limitations may restrict VO2max in highly trained athletes who exhibit exercise-induced hypoxemia. Twenty healthy male volunteers were divided into two groups according to their physical fitness status and the demonstration of exercise-induced reductions in %SaO2 less than or equal to 92%: 1) trained (T), mean VO2max = 56.5 ml.kg-1.min-1 (n = 13) and 2) highly trained (HT) with maximal exercise %SaO2 less than or equal to 92%, mean VO2max = 70.1 ml.kg-1.min-1 (n = 7). Subjects performed two incremental cycle ergometer exercise tests to determine VO2max at sea level under normoxic (21% O2) and mild hyperoxic conditions (26% O2). Mean %SaO2 during maximal exercise was significantly higher (P less than 0.05) during hyperoxia compared with normoxia in both the T group (94.1 vs. 96.1%) and the HT group (90.6 vs. 95.9%). Mean VO2max was significantly elevated (P less than 0.05) during hyperoxia compared with normoxia in the HT group (74.7 vs. 70.1 ml.kg-1.min-1). In contrast, in the T group, no mean difference (P less than 0.05) existed between treatments in VO2max (56.5 vs. 57.1 ml.kg-1.min-1). These data suggest that pulmonary gas exchange may contribute significantly to the limitation of VO2max in highly trained athletes who exhibit exercise-induced reductions in %SaO2 at sea level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We attempted to determine the change in total excess volume of CO2 output (CO2 excess) due to bicarbonate buffering of lactic acid produced in exercise due to endurance training for approximately 2 months and to assess the relationship between the changes of CO2 excess and distance-running performance. Six male endurance runners, aged 19-22 years, were subjects. Maximal oxygen uptake (VO2max), oxygen uptake (VO2) at anaerobic threshold (AT), CO2 excess and blood lactate concentration were measured during incremental exercise on a cycle ergometer and 12-min exhausting running performance (12-min ERP) was also measured on the track before and after endurance training. The absolute magnitudes in the improvement due to training for CO2 excess per unit of body mass per unit of blood lactate accumulation (delta la-) in exercise (CO2 excess.mass-1.delta la-), 12-min ERP, VO2 at AT (AT-VO2) and VO2max on average were 0.8 ml.kg-1.l-1.mmol-1, 97.8 m, 4.4 ml.kg-1. min-1 and 7.3 ml.kg-1.min-1, respectively. The percentage change in CO2 excess.mass-1.delta la- (15.7%) was almost same as those of VO2max (13.7%) and AT-VO2 (13.2%). It was found to be a high correlation between the absolute amount of change in CO2 excess.mass-1.delta la-, and the absolute amount of change in AT-VO2 (r = 0.94, P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Before the start and after 4, 8, and 12 wk of a treadmill training program male rats were randomly selected and tested for running performance, maximum O2 consumption (VO2 max), running economy (VO2 submax), and skeletal muscle oxidative capacity (QO2). Data were compared with values from untrained weight-matched control rats. Maximum running time to exhaustion increased significantly (P less than 0.01) by 4 wk and again at 12 wk (P less than 0.01). Submaximal running endurance increased by 120 (4 wk), 320 (8 wk), and 372% (12 wk) (P less than 0.01). VO2 max was increased only at 12 wk (86.0 +/- 2.7 vs. 75.5 +/- 1.9 ml O2.kg-1.min-1); VO2 submax was decreased at 4 and 8 wk but not at 12 wk. Soleus QO2 was unchanged after 4 wk of training and increased by 50% at 8 wk and by 77% at 12 wk. This study is the first to show a dissociation in both the time course and the magnitude of longitudinal changes in VO2 max, VO2 submax, QO2, and maximal and submaximal running performance. We conclude that factors other than those measured explain the improvement in running performance that resulted from endurance training in these rats.  相似文献   

19.
This study investigated the effects of intensity and duration of exercise on lymphocyte proliferation as a measure of immunologic function in men of defined fitness. Three fitness groups--low [maximal O2 uptake (VO2max) = 44.9 +/- 1.5 ml O2.kg-1.min-1 and sedentary], moderate (VO2max = 55.2 +/- 1.6 ml O2.kg-1.min-1 and recreationally active), and high (VO2max = 63.3 +/- 1.8 ml O2.kg-1.min-1 and endurance trained)--and a mixed control group (VO2max = 52.4 +/- 2.3 ml O2.kg-1.min-1) participated in the study. Subjects completed four randomly ordered cycle ergometer rides: ride 1, 30 min at 65% VO2max; ride 2, 60 min at 30% VO2max; ride 3, 60 min at 75% VO2max; and ride 4, 120 min at 65% VO2max. Blood samples were obtained at various times before and after the exercise sessions. Lymphocyte responses to the T cell mitogen concanavalin A were determined at each sample time through the incorporation of radiolabeled thymidine [( 3H]TdR). Despite differences in resting levels of [3H]TdR uptake, a consistent depression in mitogenesis was present 2 h after an exercise bout in all fitness groups. The magnitude of the reduction in T cell mitogenesis was not affected by an increase in exercise duration. A trend toward greater reduction was present in the highly fit group when exercise intensity was increased. The reduction in lymphocyte proliferation to the concanavalin A mitogen after exercise was a short-term phenomenon with recovery to resting (preexercise) values 24 h after cessation of the work bout. These data suggest that single sessions of submaximal exercise transiently reduce lymphocyte function in men and that this effect occurs irrespective of subject fitness level.  相似文献   

20.
Margaria's equation (1976)--describing the relationship between the minimum time necessary to cover a distance equal or longer than 1,000 m (record-time TR) and the maximal oxygen consumption (VO2 max)--has been modified in order to be applied to the calculation of TR in the 800 m foot race. Fifteen subjects participated in this study (VO2 max = 63 +/- 3.5 ml O2 X kg-1 X min-1, measured TR = 131 +/- 10 seconds). It has been found the TR calculated from Margaria's equation (TRc) are underestimated (TRc = 104 +/- 10 seconds). By taking into account the actual energy cost of running (0.19 ml O2 X kg-1 X m-1) and the kinetics of VO2 at the onset of exercise, TRc averaged 133 +/- 8.5 seconds. Moreover, the relationship between TRc and measured TR (TRm) is highly significant (TRc = 50.4 + 0.65 TRm; r = 0.75; P less than 0.01). These results validate Margaria's equation modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号