首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Hydrodynamic equations were derived which relate the velocity profile of endoplasmic streaming with the motive force generated by active sliding of endoplasmic organelles in Characean internodal cells, under two implicit assumptions that (1) the sliding velocity of putative organelles is comparable to the streaming velocity of endoplasm, and (2) subcortical endoplasm is far less viscous than bulk endoplasm.The equations were extended so as to calculate the velocity profile in flattened or perfused internodal cells. Calculated profiles were basically consistent with reported patterns of streaming under these conditions.Utilizing published data, we deduce some hydrodynamic parameters of streaming, and predict the dimensions of putative organelles expected to drive entire cytoplasm. A revision for published values of the motive force of streaming is proposed.Hydrodynamic analyses made earlier on the spherical organelles are repeated. The results show that the organelles may generate streaming, depending on the configurationin vivo of fine filaments protruding from the body of the organelles.  相似文献   

2.
Computer simulation of bend propagation by axoplasmic microtubules   总被引:1,自引:0,他引:1  
The generation of bending waves by microtubules in squid nerve axoplasm has been modelled using appropriately modified versions of computer programs developed previously for simulation of flagellar bending waves. The results confirm that a constant longitudinal force directed along the axis of the microtubule is sufficient to cause the generation of regular oscillations and propagated bending waves when the forward gliding movement of the microtubule is obstructed. No control mechanism is required to modulate the active force-generating system. In order to obtain bending waves similar to those observed experimentally, it was necessary to use a model for the force-generating system in which the active force decreases with increasing sliding velocity. If the elastic bending resistance of axoplasmic microtubules is similar to that of microtubules in sperm terminal filaments, the longitudinal force per unit length generated by the axoplasmic microtubules must be of the same order of magnitude as the force generated by dynein arms along the doublet microtubules of eukaryotic flagella.  相似文献   

3.
Perfused Chara cells capable of resuming ATP-dependent cytoplasmic streaming in low free Ca++ solutions have been examined by electron microscopy for myosin-like filaments. Filaments 44 nm in diameter and up to 3 micron in length have been found associated with the endoplasmic reticulum that along with mitochondria, microbodies and dictyosomes from the endoplasm becomes immobilised around the sub-cortical actin bundles when ATP is depleted. Such endoplasmic filaments have not been detected in association with mitochondria or microbodies and they have not been found in the stationary cortex. These filaments are extracted from the perfused cell by ATP unless motility-inhibiting levels of cytochalasin B are present. The filaments are not detectable in cells inactivated in solutions containing high (10(-4) M) Ca++ concentrations even when the Ca++ level is subsequently lowered. Consistent with their being required for motility, cytoplasmic streaming cannot be effeiciently reactivated by ATP in such filament-depleted cells. The possibility is discussed that the filaments contain myosin and that the endoplasmic reticulum with which they are associated has a major role in generating and transmitting the motive force for streaming.  相似文献   

4.
Cytoplasmic streaming in characean algae is thought to be driven by interaction between stationary subcortical actin bundles and motile endoplasmic myosin. Implicit in this mechanism is a requirement for some form of coupling to transfer motive force from the moving myosin to the endoplasm. Three models of viscous coupling between myosin and endoplasm are presented here, and the hydrodynamic feasibility of each model is analyzed. The results show that individual myosinlike molecules moving along the actin bundles at reasonable velocities cannot exert enough viscous pull on the endoplasm to account for the observed streaming. Attachment of myosin to small spherical organelles improves viscous coupling to the endoplasm, but results for this model show that streaming can be generated only if the myosin-spheres move along the actin bundles in a virtual solid line at about twice the streaming velocity. In the third model, myosin is incorporated into a fibrous or membranous network or gel extending into the endoplasm. This network is pulled forward as the attached myosin slides along the actin bundles. Using network dimensions estimated from published micrographs of characean endoplasm, the results show that this system can easily generate the observed cytoplasmic streaming.  相似文献   

5.
Electron microscopy of directly frozen giant cells of characean algae shows a continuous, tridimensional network of anastomosing tubes and cisternae of rough endoplasmic reticulum which pervade the streaming region of their cytoplasm. Portions of this endoplasmic reticulum contact the parallel bundles of actin filaments at the interface with the stationary cortical cytoplasm. Mitochondria, glycosomes, and other small cytoplasmic organelles enmeshed in the endoplasmic reticulum network display Brownian motion while streaming. The binding and sliding of endoplasmic reticulum membranes along actin cables can also be directly visualized after the cytoplasm of these cells is dissociated in a buffer containing ATP. The shear forces produced at the interface with the dissociated actin cables move large aggregates of endoplasmic reticulum and other organelles. The combination of fast-freezing electron microscopy and video microscopy of living cells and dissociated cytoplasm demonstrates that the cytoplasmic streaming depends on endoplasmic reticulum membranes sliding along the stationary actin cables. Thus, the continuous network of endoplasmic reticulum provides a means of exerting motive forces on cytoplasm deep inside the cell distant from the cortical actin cables where the motive force is generated.  相似文献   

6.
Summary It is proposed as a working hypothesis that conformational changes propagated like waves along intracellular fibrils (tubules, microtubules, microfilaments) have an electric component,i.e., there are waves of disturbance of electric potential in the fibrils. The paper considers the unavoidable consequences of the wave. The latter is accompanied by local electric field in the boundary layer of cytoplasmic fluid. Both positively and negatively charged particles may be attracted to the fibril in certain regions of the field and, being attracted, the particle may be under the action of longitudinal component of electric force. When the force is strong enough to move the particle with wave velocity, the particle will travel smoothly along the fibril, otherwise the movement will be saltatory or of agitation type. Net electroosmotic flow in one direction in the boundary layer of fluid may be expected when the waves are propagated in series. Turbulent motion of the fluid caused by the waves may provide the basis for activated diffusion. Asymmetry of the wave may account for polar transport of this sort. The electric field transmitted along the fibril across a sieve pore in phloem may facilitate electroosmotically the flow through the pore. Quantitative requirements of the hypothesis that electric field generated by the waves may account for different aspects of longitudinal transport in cells are apparently met.  相似文献   

7.
Laser light is Doppler-shifted in frequency by the streaming endoplasm of living cells of Nitella flexilis. The frequency spectrum of the scattered light can be interpreted as the histogram of velocities within the organism, with the exception of the intense low-frequency portion of the spectrum. We demonstrate that the lowest-frequency component is the result of amplitude modulation of the scattered light by the array of chloroplasts in the cell. Measurement of the streaming endoplasm in a photobleached "window" region allows correction of the frequency distribution for the modulation component. The complete velocity histogram for the streaming endoplasm is calculated directly from the corrected frequency distribution. Measurements of vacuolar and endoplasmic motions show that the tonoplast, the membrane separating the vacuole and the endoplasm, seems to be flowing along with the endoplasm and vacuolar sap. Placing the cell in medium containing ATP in concentrations greater than 10(-3) M greatly increases the contribution of low velocities to the velocity histogram. Cytochalasin B at high dosages (10-50 mug/ml) does not noticably change the shape of the velocity histogram, while at low dosages (1 mug/ml) there is an increase in the contribution of low velocities to the velocity histogram. Colchicine in high concentrations (1%) has no observable effect on the velocity histogram.  相似文献   

8.
Summary It was shown that the velocity distribution of the intracapillary streaming of protoplasm in a plasmodium ofPhysarum polycephalum is the same no matter whether the flow is spontaneous or whether it is induced artificially by external local air pressure applied to the plasmodium. Thus we conclude that the protoplasmic flow in the plasmodium is caused by local difference in endoplasm pressure. The view that the seat of the motive force responsible for the flow is located in the streaming protoplasm itself is untenable for this type of streaming.  相似文献   

9.
In Characean cells endoplasmic streaming stops upon membrane depolarization accompanied by Ca(2+) entry. We investigated the mechanism of this cessation of endoplasmic streaming by reconstituting the vesicle movement in vitro. In a living cell of Chara corallina, there are a number of vesicles moving along actin cables. Vesicles in the endoplasm squeezed out of the cell into a medium containing Mg-ATP showed directional movements under a dark field microscope. When the extracted endoplasm was treated with 20 nM okadaic acid, vesicles showed only movements like the Brownian motion. When it was treated with 50 nM staurosporine, directional movements of vesicles were activated. These movements were analyzed by image processing of videomicroscopic records. Vesicle movements along F-actin filaments were also observed by merging both images of the same field by dark field microscopy and fluorescence microscopy, indicating that myosin on the vesicle surface was responsible for vesicle movements. We also examined the effects of okadaic acid and staurosporine on in vitro sliding of F-actin on Chara myosin. When Chara myosin was treated with 20 nM okadaic acid in the cell extract, the number of sliding F-actin filaments was greatly reduced. In contrast, it increased when Chara myosin was treated with 50 nM staurosporine. In addition, Chara myosin treated with protein kinase C greatly diminished its motility. These results suggest that inactivation of Chara myosin via its phosphorylation is responsible for cessation of endoplasmic streaming.  相似文献   

10.
Various methods have been used to study cytoplasmic streaming in giant algal cells during the past three decades. Simple techniques can be used with characean internodal cells to modify the cell constitution in various ways to gain insight into the mechanism of cytoplasmic streaming. Another method involves isolatingin vitro a huge drop of uninjured endoplasm, to examine its physical and dynamic properties. The motive force responsible for streaming has been measured by three different techniques with similar results. Subcortical fibrils consisting of bundles of F-actin with the same polarity are indispensable for streaming. Differential treatment of the endoplasm and ectoplasm has shown that putative characean myosin is localized in the endoplasm. Studies of the roles of ATP, Mg2+, Ca2+, H+ etc. in the streaming have been conducted by cellular perfusion, which allows removal of the tonoplast, or by techniques permeabilizing the protoplasmic membrane. A slow version of the movement can even be artificially reproduced by combining characean actinin situ and exogenous myosin in the presence of Mg-ATP. The findings thus far obtained support the hypothesis that cytoplasmic streaming in characean cells is caused by an active shearing force produced by interaction of the actin filament bundles on the cortex with myosin in the endoplasm.  相似文献   

11.
A monoclonal antibody to the heavy chain of myosin from mouse 3T3 cells was used to detect and localize related proteins in the green alga Chara. Proteins of 200,000 and 110,000 Mr reacted on immunoblots of proteins precipitated rapidly with trichloroacetic acid to minimize proteolysis. Immunofluorescence of whole cells localized these proteins to organelles of the streaming endoplasm, to a system of endoplasmic strands and to the subcortical actin bundles. Except that fewer endoplasmic strands and organelles were found and the strands were tangled, the localization pattern was similar in cells rapidly perfused to remove the bulk of the streaming endoplasm. Actin was confined almost entirely to the system of subcortical actin bundles in both whole and perfused cells. Myosin that was associated with the tangled endoplasmic strands but not that associated with the organelles or actin bundles was removed by concentrations of Ca2+ inhibiting ATP-dependent streaming in perfused cells. ATP extracted both organelles and endoplasmic strands but left a continuous pattern of myosin immunostaining along the actin bundles. The findings are discussed in relation to the possible existence of two forms of myosin and of separate mechanisms moving the bulk endoplasm and individual organelles.  相似文献   

12.
Subcortical fibrils composed of bundles of F-actin filaments and endoplasmic filaments are responsible for endoplasmic streaming. It is reported here that these fibrils and filaments move actively in an artificial medium containing Mg-ATP and sucrose at neutral pH, when the medium was added to the cytoplasm squeezed out of the cell. The movement was observed by phase-contrast microscopy or dark-field microscopy and recorded on 16-mm film. Chains of chloroplasts linked by subcortical fibrils showed translational movement in the medium. Even after all chloroplasts and the endoplasm were washed away by perfusion with fresh medium, free fibrils and/or filaments (henceforth, referred to as fibers) not attached to chloroplasts continued travelling in the direction of the fiber orientation. Sometimes the fibers formed rings and rotated. Chloroplast chains and free fibers or rings continued moving for 5-30 min at about half the rate of the endoplasmic streaming in vivo. Calcium ion concentrations < 10(-7) M permitted movement to take place. Electron microscopy revealed that both fibers and rings were bundles of F-actin filaments that showed the same polarity after decoration with heavy meromyosin.  相似文献   

13.
Theoretical modeling substantiates the bionic solution of an optimal wave propulsor for water transport, which must have the amplitude and phase characteristics of the fish bending locomotor waves. Use is made of a computer model of multilink chain bending waves where arbitrary distributions can be set for amplitudes and phases of separate segments. With the linear increase in the amplitude of segmental oscillations, a numerical experiment determines the optimal phasing whereby each segment provides a maximal longitudinal component of the motive force. Two versions of hydrodynamic interaction of the segments with water are compared, implying (i) linear and (ii) quadratic drag: the optimal phasing of the transverse and longitudinal oscillations proves to be (i) orthogonal and (ii) nearly orthogonal. The computed bending wave shapes corresponding to dynamic optimization are consistent with the experimental data.  相似文献   

14.
The shape and propagation of waves produced by eukaryotic flagella depend on the three-dimensional arrangement and physical-chemical properties of peripheral substructures. The modeling analysis presented here, which assumes force-moment equilibrium and neglects the viscous resistances of the medium, shows how substructural arrangements characteristic of 9+0, 9+1, and 9+2 axonemes can yield their characteristic wave patterns. When flexural stiffnesses are equal along all axonemal radii, any non-uniform doublet shearing pattern propagated distally at constant rate, with successive pairs 19 cycle out of phase, should generate helical waves. When stiffnesses differ greatly on different radii, but the stiffness pattern is the same for all cross-sections, any such shearing pattern should yield planar waves resembling sine-generated curves.Propagated axonemal bending results from the active bending moment produced by local shearing of doublet pairs. Uniformly twisting the doublets about the axonemal axis cannot directly alter the magnitude of the active bending moment. If dynein cross-bridges are activated by shear displacement between peripheral doublets, then the resulting distribution of the active bending moment will be appropriate for balancing the elastic moment in a propagated bending wave.  相似文献   

15.
Summary The present work is a first attempt at calculating the absolute amount of the motive force responsible for the rotational protoplasmic streaming. The calculation was made on the basis of the conclusion we arrived at previously through the analysis of intracellular velocity distribution, namely, that the active driving mechanism responsible for the rotational streaming is located at the interface between the cortical gel and the outer edge of the endoplasmic layer. The motive force, which is the shifting force generated at this interface, was determined in the internodal cell ofNitella flexilis to be within the range of 1–2 dynes/cm2 at room temperature.Supported by a Grant for Fundamental Scientific Research from the Japanese Ministry of Education.  相似文献   

16.
Summary We constructed a new centrifuge microscope of the stroboscopic type, with which the cytoplasmic streaming inNitella internodal cells under centrifugal acceleration was studied. Under moderate centrifugal acceleration (ca. 50–100×g), the direction of cytoplasmic streaming in an internodal cell ofNitella is parallel to the direction of the subcortical fibrils. The speed of endoplasm flowing contiguous to the subcortical fibrils is neither accelerated nor retarded by moderate centrifugal acceleration. The endoplasmic flow, however, stops suddenly following an electrical stimulus. The endoplasm contiguous to the subcortical fibrils is immobilized transiently at the time of streaming cessation induced by an electrical stimulus under centrifugal acceleration at 50–100×g, even at 900×g. It is suggested that transitory cross bridges between the immobilized endoplasm and the subcortical fibrils are formed at the time of streaming cessation. The bulk endoplasm flows as a whole in the direction parallel to that of the subcortical fibrils and stops promptly upon electrical stimulation. Soon after the stoppage the bulk endoplasm starts to flow passively in the direction parallel to that of the centrifugal acceleration as a result of the centrifugal force.Abbreviations APW artificial pond water - CMS centrifuge microscope  相似文献   

17.
After vacuolar perfusion of Chara internode cells, the cytoplasm remaining in situ can be reactivated by ATP to give full rates of streaming. Observations during both perfusion and reactivation indicated that the generation of the motive force was associated with fibres consisting of bundles of microfilaments. In the absence of ATP, the remaining endoplasmic organelles were immobilized along such fibres. When ATP was introduced, organelles moved along the fibres at speeds up to 50 mum S minus 1, but but were progressively released from contact to leave the fibres in a conspicuously clean state. Inorganic pyrophosphate freed the organelles from the fibres without supporting movements. Motility required millimolar Mg2nlevels, free Ca2nat 10 minus 7 M or less and was inhibited by high levels of Clminus and by pH's on either side of 7.0. The reactivated movements were rapidly and completely inhibited by 25mug ml minus 1 cytochalasin B. The results are interpreted in terms of actin filaments in the stationary cortex interacting with a myosin-like protein which is able to link to endoplasmic organelles. Movement results from an active shear type of mechanism.  相似文献   

18.
S. Ogihara  K. Kuroda 《Protoplasma》1979,100(2):167-177
Summary R-HMM (rhodamine-heavy meromyosin) stained the birefringent fibrous structure which appears and disappears cyclically in parallel with the periodic shuttle streaming in the plasmodium ofPhysarum polycephalum. In addition, 0.6 M KI readily made the birefringent fibrils fade away. These results clearly show that the birefringent fibrils are composed of actin filaments and prove the possibility of actin filaments to alter in the aggregation state during the cyclic production of the motive force responsible for the cytoplasmic streaming.  相似文献   

19.
Our analysis of known data reveals that translocations of passively movable cellular organelles from tiny granules up to large cell nuclei can be ascribed to transport by streaming cytoplasm. The various behaviours, such as velocity changes during more or less interrupted movements, forth and back shuttling and particle rotation result from different types of plasma circulation. Fast movements over long distances, as observed in the large characean internodial cells occur in strong streams generated by myosin in bundles of actin filaments in the direction of the barbed filament ends. Slow movements with frequent reversions of the direction are typical for neuronal axons, in which an anterograde plasma flow, produced in a thin layer of membrane-attached actin filaments, is compensated by a retrograde stream, produced by dynein activity in the central bundle of microtubules. Here particle rotation is due to steep flow velocity gradients, and frequent changes of particle movements result from minor particle displacements in radial directions. Similar shuttling of pigment granules in the lobes of epidermal chromatophores results from the same mechanism, whereby the centrifugal movement along astral microtubules is due to flow generated by excess of kinesin activity and the centripetal movement to the plasma recycling through the intermicrotubular space. If the streaming pattern is reversed by switching to excess dynein activity, the moving granules are trapped in the high microtubule density at the aster center. The presence of larger bodies in asters disturbs the regular, kinesin-dependent microtubule distribution in such a way that a superimposed centrifugal plasma flow develops in the microtubule-dense layer along them, which is recycled in the microtubule-free space, created by their presence. Consequently, at excess kinesin activity, nuclei, mitochondria as well as chromosome fragments move towards the aster center until they reach a dynamically stabilized position that depends on the local microtubule density. These various behaviours are not rationally explainable by models based on a mechanical stepping along microtubules or actin filaments.  相似文献   

20.
Plasmodia of the acellular slime mold, Physarum polycephalum, reveal a complex and changing pattern of birefringence when examined with a sensitive polarizing microscope. Positively birefringent fibrils are found throughout the ectoplasmic region of the plasmodium. In the larger strands they may be oriented parallel to the strand axis, or arranged circularly or spirally along the periphery of endoplasmic channels. Some fibrils exist for only a few minutes, others for a longer period. Some, particularly the circular fibrils, undergo changes in birefringence as they undergo cyclic deformations. In the ramifying strand region and the advancing margin there is a tendency for fibrils of various sizes to become organized into mutually orthogonal arrays. In some plasmodia the channel wall material immediately adjacent to the endoplasm has been found to be birefringent. The sign of endoplasmic birefringence is negative, and its magnitude is apparently constant over the streaming cycle. The pattern of plasmodial birefringence and its changes during the shuttle streaming cycle of Physarum are considered in the light of several models designed to explain either cytoplasmic streaming alone or the entire gamut of plasmodial motions. The results of this and other recent physical studies suggest that both streaming and the various other motions of the plasmodium may very likely be explained in terms of coordinated contractions taking place in the fibrils which are rendered visible in polarized light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号