首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Hedgehog signaling induces cardiomyogenesis in P19 cells   总被引:7,自引:0,他引:7  
Sonic Hedgehog (Shh) is a critical signaling factor for a variety of developmental pathways during embryogenesis, including the specification of left-right asymmetry in the heart. Mice that lack Hedgehog signaling show a delay in the induction of cardiomyogenesis, as indicated by a delayed expression of Nkx2-5. To further examine a role for Shh in cardiomyogenesis, clonal populations of P19 cells that stably express Shh, termed P19(Shh) cells, were isolated. In monolayer P19(Shh) cultures the Shh pathway was functional as shown by the up-regulation of Ptc1 and Gli1 expression, but no cardiac muscle markers were activated. However, Shh expression induced cardiomyogenesis following cellular aggregation, resulting in the expression of factors expressed in cardiac muscle including GATA-4, MEF2C, and Nkx2-5. Furthermore, aggregated P19 cell lines expressing Gli2 or Meox1 also up-regulated the expression of cardiac muscle factors, leading to cardiomyogenesis. Meox1 up-regulated the expression of Gli1 and Gli2 and, thus, can modify the Shh signaling pathway. Finally, Shh, Gli2, and Meox1 all up-regulated BMP-4 expression, implying that activation of the Hedgehog pathway can regulate bone morphogenetic protein signals. Taken together, we propose a model in which Shh, functioning via Gli1/2, can specify mesodermal cells into the cardiac muscle lineage.  相似文献   

4.
5.
6.
7.
8.

Background

Understanding stem cell differentiation is essential for the future design of cell therapies. While retinoic acid (RA) is the most potent small molecule enhancer of skeletal myogenesis in stem cells, the stage and mechanism of its function has not yet been elucidated. Further, the intersection of RA with other signalling pathways that stimulate or inhibit myogenesis (such as Wnt and BMP4, respectively) is unknown. Thus, the purpose of this study is to examine the molecular mechanisms by which RA enhances skeletal myogenesis and interacts with Wnt and BMP4 signalling during P19 or mouse embryonic stem (ES) cell differentiation.

Results

Treatment of P19 or mouse ES cells with low levels of RA led to an enhancement of skeletal myogenesis by upregulating the expression of the mesodermal marker, Wnt3a, the skeletal muscle progenitor factors Pax3 and Meox1, and the myogenic regulatory factors (MRFs) MyoD and myogenin. By chromatin immunoprecipitation, RA receptors (RARs) bound directly to regulatory regions in the Wnt3a, Pax3, and Meox1 genes and RA activated a β-catenin-responsive promoter in aggregated P19 cells. In the presence of a dominant negative β-catenin/engrailed repressor fusion protein, RA could not bypass the inhibition of skeletal myogenesis nor upregulate Meox1 or MyoD. Thus, RA functions both upstream and downstream of Wnt signalling. In contrast, it functions downstream of BMP4, as it abrogates BMP4 inhibition of myogenesis and Meox1, Pax3, and MyoD expression. Furthermore, RA downregulated BMP4 expression and upregulated the BMP4 inhibitor, Tob1. Finally, RA inhibited cardiomyogenesis but not in the presence of BMP4.

Conclusion

RA can enhance skeletal myogenesis in stem cells at the muscle specification/progenitor stage by activating RARs bound directly to mesoderm and skeletal muscle progenitor genes, activating β-catenin function and inhibiting bone morphogenetic protein (BMP) signalling. Thus, a signalling pathway can function at multiple levels to positively regulate a developmental program and can function by abrogating inhibitory pathways. Finally, since RA enhances skeletal muscle progenitor formation, it will be a valuable tool for designing future stem cell therapies.  相似文献   

9.
10.
11.
12.
13.
14.
Hedgehog (Hh) signaling plays a role in heart morphogenesis and can initiate cardiomyogenesis in P19 cells. To determine if Hh signaling is essential for P19 cell cardiomyogenesis, we determined which Hh factors are expressed and the effect of Hh signal transduction inhibitors. Here, we find that the Hh gene family and their downstream mediators are expressed during cardiomyogenesis but an active Hh signaling pathway is not essential. However, loss of Hh signaling resulted in a delay of BMP-4, GATA-4, Gli2, and Meox1 expression during cardiomyogenesis. By using Noggin-overexpressing P19 cells, we determined that Hh signaling was not active during Noggin-mediated inhibition of cardiomyogenesis. Thus, there is cross talk between the Hh and BMP signaling pathways and the Hh pathway appears important for timely cardiomyogenesis.  相似文献   

15.
16.
17.
Recent studies have shown that generation of different kinds of neurones is controlled by combinatorial actions of homeodomain (HD) proteins expressed in the neuronal progenitors. Pax6 is a HD protein that has previously been shown to be involved in the differentiation of the hindbrain somatic (SM) motoneurones and V1 interneurones in the hindbrain and/or spinal cord. To investigate in greater depth the role of Pax6 in generation of the ventral neurones, we first examined the expression patterns of HD protein genes and subtype-specific neuronal markers in the hindbrain of the Pax6 homozygous mutant rat. We found that Islet2 (SM neurone marker) and En1 (V1 interneurone marker) were transiently expressed in a small number of cells, indicating that Pax6 is not directly required for specification of these neurones. We also observed that domains of all other HD protein genes (Nkx2.2, Nkx6.1, Irx3, Dbx2 and Dbx1) were shifted and their boundaries became blurred. Thus, Pax6 is required for establishment of the progenitor domains of the ventral neurones. Next, we performed Pax6 overexpression experiments by electroporating rat embryos in whole embryo culture. Pax6 overexpression in the wild type decreased expression of Nkx2.2, but ectopically increased expression of Irx3, Dbx1 and Dbx2. Moreover, electroporation of Pax6 into the Pax6 mutant hindbrain rescued the development of Islet2-positive and En1-positive neurones. To know reasons for perturbed progenitor domain formation in Pax6 mutant, we examined expression patterns of Shh signalling molecules and states of cell death and cell proliferation. Shh was similarly expressed in the floor plate of the mutant hindbrain, while the expressions of Ptc1, Gli1 and Gli2 were altered only in the progenitor domains for the motoneurones. The position and number of TUNEL-positive cells were unchanged in the Pax6 mutant. Although the proportion of cells that were BrdU-positive slightly increased in the mutant, there was no relationship with specific progenitor domains. Taken together, we conclude that Pax6 regulates specification of the ventral neurone subtypes by establishing the correct progenitor domains.  相似文献   

18.
19.
The paraxial mesoderm of the somites of the vertebrate embryo contains the precursors of the axial skeleton, skeletal muscles and dermis. The Meox1 and Meox2 homeobox genes are expressed in the somites and their derivatives during embryogenesis. Mice homozygous for a null mutation in Meox1 display relatively mild defects in sclerotome derived vertebral and rib bones, whereas absence of Meox2 function leads to defective differentiation and morphogenesis of the limb muscles. By contrast, mice carrying null mutations for both Meox genes display a dramatic and wide-ranging synthetic phenotype associated with extremely disrupted somite morphogenesis, patterning and differentiation. Mutant animals lack an axial skeleton and skeletal muscles are severely deficient. Our results demonstrate that Meox1 and Meox2 genes function together and upstream of several genetic hierarchies that are required for the development of somites. In particular, our studies place Meox gene function upstream of Pax genes in the regulation of chondrogenic and myogenic differentiation of paraxial mesoderm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号