首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anaphylatoxins activate immune cells to trigger the release of proinflammatory mediators that can lead to the pathology of several immune-inflammatory diseases. However, the intracellular signaling pathways triggered by anaphylatoxins are not well understood. Here we report for the first time that sphingosine kinase (SPHK) plays a key role in C5a-triggered signaling, leading to physiological responses of human neutrophils. We demonstrate that C5a rapidly stimulates SPHK activity in neutrophils and differentiated HL-60 cells. Using the SPHK inhibitor N,N-dimethylsphingosine (DMS), we show that inhibition of SPHK abolishes the Ca2+ release from internal stores without inhibiting phospholipase C or protein kinase C activation triggered by C5a but has no effect on calcium signals triggered by other stimuli (FcgammaRII). We also show that DMS inhibits degranulation, activation of the NADPH oxidase, and chemotaxis triggered by C5a. Moreover, an antisense oligonucleotide against SPHK1, in neutrophil-differentiated HL-60 cells, had similar inhibitory properties as DMS, suggesting that the SPHK utilized by C5a is SPHK1. Our data indicate that C5a stimulation decreases cellular sphingosine levels and increases the formation of sphingosine-1-phosphate. Exogenously added sphingosine has a dual effect on C5a-stimulated oxidative burst: it has a priming effect at lower concentrations but a dose-dependent inhibitory effect at higher concentrations; however, C5a-triggered protein kinase C activity was only reduced at high concentration of sphingosine. In contrast, C5a-triggered Ca2+ signals, chemotaxis, and degranulation were not affected by sphingosine at all. Exogenous sphingosine-1-phosphate, by itself, did not induce degranulation or chemotaxis, but it did marginally induce Ca2+ signals and oxidative burst and had a priming effect, enhancing all the C5a-triggered responses. Taken together, these results suggest that SPHK plays an important role in the immune-inflammatory pathologies triggered by anaphylatoxins in human neutrophils and point out SPHK as a potential therapeutic target for the treatment of diseases associated with neutrophil hyperactivation.  相似文献   

2.
Epidermal growth factor stimulates migration of a number of cell types, yet the signaling pathways that regulate epidermal growth factor-stimulated migration are poorly defined. In this report, we employ a transient transfection migration assay to assess the role of components of the Ras-mitogen-activated protein (MAP) kinase signaling pathway in epidermal growth factor-stimulated chemotaxis of rat embryo fibroblasts. Expression of dominant negative Ras blocks epidermal growth factor-mediated chemotaxis, while constitutively active Ras has no effect on chemokinesis or chemotaxis. PD98059 and U0126, inhibitors of MAP kinase kinase (MEK) activity, decreased epidermal growth factor-stimulated migration, while kinase-defective MEK1, an inhibitor of MAP kinase activation, enhanced migration. To understand the paradoxical effects of these molecules on epidermal growth factor-induced migration, we examined the role of c-Raf on migration. Expression of either wild type c-Raf or the catalytic domain of c-Raf effectively inhibited epidermal growth factor-stimulated cell migration. We suggest that, whereas Ras activity is necessary to promote epidermal growth factor-stimulated migration, sustained activation of c-Raf may be important in down-regulating migratory signaling pathways triggered by epidermal growth factor receptor activation. Further, activation of c-Raf upon inhibition of the MEK-MAP kinase pathway may contribute to the inhibition of cell migration observed with pharmacological MEK inhibitors.  相似文献   

3.
4.
The CC chemokine eotaxin plays a pivotal role in local accumulation of eosinophils. Very little is known about the eotaxin signaling in eosinophils except the activation of the mitogen-activated protein (MAP) kinase family. The p21 G protein Rho and its substrate Rho-associated coiled-coil forming protein kinase (ROCK) regulate the formation of stress fibers and focal adhesions. In the present study, we studied the functional relevance of Rho and ROCK in eosinophils using the ROCK inhibitor (Y-27632) and exoenzyme C3, a specific Rho inhibitor. Eotaxin stimulates activation of Rho A and ROCK II in eosinophils. Exoenzyme C3 almost completely inhibited the ROCK activity, indicating that ROCK is downstream of Rho. We then examined the role of Rho and ROCK in eosinophil chemotaxis. The eotaxin-induced eosinophil chemotaxis was significantly inhibited by exoenzyme C3 or Y-27632. Because extracellular signal-regulated kinase (ERK)1/2 and p38 MAP kinases are activated by eotaxin and are critical for eosinophil chemotaxis, we investigated whether Rho and ROCK are upstream of these MAP kinases. C3 partially inhibited eotaxin-induced phosphorylation of ERK1/2 but not p38. In contrast, neither ERK1/2 nor p38 phosphorylation was abrogated by Y-27632. Both C3 and Y-27632 reduced reactive oxygen species production from eosinophils. We conclude that both Rho and ROCK are important for eosinophil chemotaxis and reactive oxygen species production. There is a dichotomy of downstream signaling pathways of Rho, namely, Rho-ROCK and Rho-ERK pathways. Taken together, eosinophil chemotaxis is regulated by multiple signaling pathways that involve at least ROCK, ERK, and p38 MAP kinase.  相似文献   

5.
Oncostatin M (OSM), a member of the hemopoietic cytokine family, has been implicated in the process of fibrosis and dermal wound healing. As a part of an ongoing study of the mechanisms of fibrosis and dermal wound healing, we have investigated the mechanism of the growth regulation of dermal fibroblasts by OSM. OSM stimulates the mitogenesis of dermal fibroblasts in a dose-dependent manner. This effect was completely blocked by anti-OSM IgG, but not by anti-IL-6 IgG. Furthermore, OSM induction was abolished by genistein, a tyrosine kinase inhibitor, or by PD98059, a specific mitogen-activated protein (MAP) kinase pathway inhibitor, but not by calphostin C, a protein kinase C inhibitor. Immunoblotting analysis using a specific Ab against phosphorylated MAP kinase (Thr202/Tyr204) showed that OSM induces phosphorylation of MAP kinase in dermal fibroblasts. Furthermore, transient transfection of the dominant-negative mutant MAP kinase into dermal fibroblasts abolished the OSM induction. These results strongly suggest that OSM stimulates the growth of dermal fibroblasts via a MAP kinase-dependent pathway.  相似文献   

6.
Subconfluent cultures of NIH-3T3 fibroblasts transformed by the Ha-ras, Ki-v-ras, v-src, and v-fms oncogene proteins all possess elevated steady-state levels of diacylglycerol, the endogenous activator of protein kinase C, as compared to the nontransformed parental lines. These oncogene-transformed fibroblasts also exhibit a significantly decreased level of cellular protein kinase C activity as measured by four different criteria: phorbol ester-stimulated phosphorylation of an endogenous 80-kilodalton (80 kDa) substrate; phorbol ester-stimulated changes in 86Rb uptake; enzymatic assay; and [3H]phorbol ester binding. In all cases, the transformed cells demonstrated an attenuated response to phorbol ester addition and a lower phorbol ester binding capacity as compared to the parental lines. Western analysis of the endogenous 80-kDa substrate of protein kinase C revealed a significantly lower level of this protein in the transformed cells than in the untransformed controls, and this decrease could be mimicked in parental cells by long-term incubation with phorbol esters, suggesting that the level of the 80-kDa protein is regulated by the state of activation of protein kinase C. These effects do not appear to be nonspecific responses to autocrine secretions by the transformed cells. They may represent an unsuccessful attempt by the transformed cells to negatively modulate the constitutive proliferative signals generated by the oncogene products.  相似文献   

7.
Serum deprivation of C3H 10T 1/2 fibroblasts resulted in DNA fragmentation which was prevented by growth factors such as Epidermal Growth Factor or the tumor promoters, 12-0-tetradecanoyl-13-0-phorbol acetate and Dihydroteleocidin B. Palmityl carnitine, an inhibitor of Ca2+-phospholipid-dependent protein kinase C, reversed the effects of the tumor promoters, but not the effect of Epidermal Growth Factor.  相似文献   

8.
Abstract : In the present study, the role of phosphoprotein phosphatase in the regulation of L-type Ca2+ channel currents in rat pinealocytes was investigated using the whole-cell version of the patch-clamp technique. The effects of three phosphatase inhibitors, calyculin A, tautomycin, and okadaic acid, were compared. Although all three inhibitors were effective in inhibiting the L-type Ca2+ channel current, calyculin A was more potent than either tautomycin or okadaic acid, suggesting the involvement of phosphoprotein phosphatase-1. To determine the kinase involved in the regulation of these channels, cells were pretreated with H7 (a nonspecific kinase inhibitor), H89 (a specific inhibitor of cyclic AMP-dependent kinase), KT5823 (a specific inhibitor of cyclic GMP-dependent kinase), or calphostin C (a specific inhibitor of protein kinase C). Pretreatment with either H7 or calphostin C decreased the inhibitory effect of calyculin A on the L-type Ca2+ channel current. In contrast, pretreatment with H89 or KT5823 had no effect on the inhibition caused by calyculin A. Based on these observations, we conclude that basal phosphatase activity, probably phosphoprotein phosphatase-1, plays an important role in the regulation of L-type Ca2+ channel currents in rat pinealocytes by counteracting protein kinase C-mediated phosphorylation.  相似文献   

9.
The effect of protein kinase modulators on the ability of nerve and fibroblast growth factors to induce neurite outgrowth in pheochromocytoma PC12 cells was studied. The protein kinase inhibitor H7 increased the neurite-stimulating capacity of these factors. The effect of H7 was observed within 1 h and was dose-dependent. HA 1004, an inhibitor of cAMP- and cGMP-dependent protein kinases, did not affect the neurite-stimulating activity of NGF. Substances inhibiting protein kinase C, ganglioside GT1b and quercetin, acted in a similar way whereas sphingosine had an opposite effect.  相似文献   

10.
11.
In testing the hypothesis that the stimulation of the release of fibronectin (FN) by 12-O-tetradecanoylphorbol 13-acetate (TPA) from human lung fibroblasts in culture is the result of activation of protein kinase C (PKC), we found that the PKC inhibitor sphingosine strongly inhibited FN release in presence and even in absence of TPA. However, a different PKC inhibitor, calphostin C, despite almost complete inhibition of PKC, had no effect on FN release. We concluded that sphingosine is a potent inhibitor of FN release from the cell surface, independent of its inhibition of PKC; and that TPA stimulates release of FN by a pathway other than activation of PKC. We found that the activation of PKC by TPA was accompanied by inhibition of the cAMP-dependent protein kinase (PKA). When PKA was inhibited by an antagonist (H8, a cAMP analogue) at a concentration specific for PKA inhibition, the release of FN was stimulated similar to the stimulation with TPA. Activation of PKA with forskolin resulted in decreased FN release. In conclusion, we have shown that: (1) sphingosine had a robust effect inhibiting the release of FN from fibroblasts, independent of its action on PKC; (2) TPA treatment of these cells resulted in inhibition of PKA; (3) inhibition of PKA stimulated FN release whereas its activation decreased this release. It is possible that PKA, by phosphorylating a protein, may function, directly or indirectly, in keeping FN attached to the cell surface of fibroblasts.  相似文献   

12.
Lymphokines including IL-2, IL-4, and IL-6 are involved in the induction of Ig production by activated B cells. We have investigated the role of protein kinases in IL-6-induced IgM secretion by SKW6.4 cells, an IL-6 responsive B cell line. IL-6-stimulated IgM production was inhibited by elevated intracellular cAMP induced either by the addition of dibutyryl cAMP or cholera toxin. The inhibitory effect of elevated intracellular cAMP was blocked by n-(2-(Methylamino)ethyl)-5-isoquinolinesulfonic dihydrochloride (H8), an inhibitor of protein kinase A. H8 did not affect IgM secretion induced by IL-6. In contrast, the addition of 1-(5-isoquinolinesulfonyl)-2-methylpiperizine dihydrochloride (H7), an inhibitor of protein kinase C activity, markedly inhibited IL-6-stimulated IgM production by SKW6.4 cells. H7 and elevated intracellular cAMP inhibited IgM mRNA expression and subsequent IgM synthesis by SKW6.4 cells. SKW6.4 proliferation, as determined by [3H]thymidine incorporation, was not markedly affected by IL-6, dibutyryl cAMP, cholera toxin, H7 or H8. PMA, an activator of protein kinase C, directly stimulated significant IgM secretion by SKW6.4 cells. When added to PMA-stimulated SKW6.4 cells, IL-6 stimulated additional IgM production. This observation suggested that IL-6 could stimulate differentiation without activating protein kinase C. This was confirmed by demonstrating that IL-6 did not stimulate production of diacylglycerol, did not induce the translocation of protein kinase C from the cytosolic compartment to the plasma membrane and could induce SKW6.4 cells to produce IgM after depletion of their cellular protein kinase C by PMA. Taken together these results suggests that IL-6-stimulated IgM production requires utilization of an H7-inhibitable protein kinase that can be inhibited by a protein kinase A-dependent pathway. Despite the fact that PMA can stimulate IgM production in SKW6.4 cells, IL-6 appears to use a protein kinase pathway other than protein kinase C to induce IgM production.  相似文献   

13.
Fibroblasts grown from synovial and peritoneal tissues release into the medium an inhibitor of neutrophil chemotaxis. The inhibitor resembles the antagonist previously described in synovial and peritoneal fluids. It is a heat stable (56 degrees C) protein of MW approximately 40 kDa that counteracts the chemotactic activity of zymosan-activated serum or purified C5a but not the peptide chemoattractant F-met-leu-phe. No chemotactic inhibitor was detected in media from skin fibroblast cultures or in formal human sera. It is suggested that the inhibitor is produced locally by synovial and peritoneal fibroblasts and that it might play a role in the regulation of inflammation at sites lined with mesothelium.  相似文献   

14.
Accumulation of collagen I and III in the myocardium is a prominent feature of interstitial fibrosis. Prostaglandin F(2α) (PGF(2α)) facilitates fibrosis by increasing collagen synthesis. However, the underlying mechanisms mediating the effect of PGF(2α) on collagen expression in cardiac fibroblasts are not yet fully elucidated. We measured the mRNA and protein levels of collagen I and III by quantitative real-time PCR and ELISA, respectively. Activation of signaling pathways was determined by western blot analysis. In primary rat cardiac fibroblasts, treatment with PGF(2α) stimulated both the mRNA and protein levels of collagen I and III, and pretreatment with the F-prostanoid (FP) receptor antagonist AL-8810, protein kinase C inhibitor LY-333531, and Rho kinase inhibitor Y-27632 significantly inhibited PGF(2α)-induced collagen I and III expression. FP receptor, protein kinase C, and Rho kinase were activated with PGF(2α) treatment. PGF(2α) may be an important regulator in the synthesis of collagen I and III via an FP receptor/protein kinase C/Rho kinase cascade in cardiac fibroblasts, which might be a new therapeutic target for myocardial fibrosis.  相似文献   

15.
Inhibiting cAMP-dependent protein kinase (A-kinase) in mammalian fibroblasts through microinjection of a modified specific inhibitor peptide, PKi(m) or the purified inhibitor protein, PKI, resulted in rapid and pronounced chromatin condensation at all phases of the cell cycle. Together with these changes in chromatin, a marked reorganization of microtubule network occurred, accompanied in G2 cells by extensive alterations in cell shape which have many similarities to the premitotic phenotype previously observed after activation of p34cdc2 kinase, including the lack of spindle formation and the persistence of a nuclear envelope. In order to examine whether A-kinase inhibition and p34cdc2 kinase form part of the same or different inductive pathways, PKI and p34cdc2 kinase were injected together. Co-injection of both components resulted in nuclear envelope disassembly, an event not observed with injection of either component alone. This result implies that p34cdc2 and A-kinase inhibition have complementary and additive effects on the process of nuclear envelope breakdown in living fibroblasts, a conclusion further supported by our observation of a pronounced dephosphorylation of lamins A and C in cells after injection of PKi(m). Taken together, these data suggest that down-regulation of A-kinase is a distinct and essential event in the induction of mammalian cell mitosis which co-operates with the p34cdc2 pathway.  相似文献   

16.
Recently, the amino acid sequence of a 12 Kd endogenous protein inhibitor of protein kinase C (PKC-I 2) has been shown to be identical to that of the 12 KDa receptor for the immunosuppressive drug, FK-506. In view of this observation we examined the effects of recombinant and native human FKBP on protein kinase C (PKC) activity. FKBP, at molar concentrations up to 1900-fold over that of PKC, failed to inhibit PKC phosphorylation of histone H1 and failed to block the auto-phosphorylation of PKC. Interestingly, FKBP is phosphorylated by PKC in these reactions. The phosphorylation of FKBP by PKC appears to be specific since the catalytic subunit of cAMP-dependent protein kinase fails to phosphorylate the binding protein. Our results fail to support a role for FKBP as an inhibitor of protein kinase C.  相似文献   

17.
Using an N-bromosuccinimide cleavage fragment of histone H1 as a relatively specific substrate for protein kinase C, we evaluated the partitioning of this kinase activity between soluble and particulate cellular fractions in 3T3-L1 fibroblasts. In confluent, serum-deprived cells, protein kinase C activity was approximately equally divided between soluble and detergent-extractable particulate fractions; both rapidly growing and transformed cells appeared to contain higher levels of particulate enzyme activity. Soluble protein kinase C activity and immunoreactivity decreased to virtually undetectable levels after exposure of the cells to phorbol 12-myristate 13-acetate (PMA), associated with a commensurate increase in particulate kinase activity and immunoreactivity. In intact cells, PMA appeared to cause a shift of immunoreactive protein kinase C from the cytosol to the perinuclear region, as assessed by immunofluorescent microscopy; however; subcellular fractionation revealed that PMA caused increases in the protein kinase C activity associated primarily with non-nuclear membranes. Exposure of the cells to sn-1,2-dioctanoylglycerol resulted in a modest and transient membrane association of protein kinase C, whereas platelet-derived growth factor, fibroblast growth factor, and bombesin caused no detectable increases in the membrane association of the kinase. Activation of protein kinase C by growth factors in fibroblasts may occur without the gross disturbances in intracellular kinase location which occur in response to phorbol esters.  相似文献   

18.
1-Monooleoylglycerol (MOG), a recently reported diacylglycerol kinase inhibitor (Bishop, W. R., Ganong, B. R., and Bell, R. M. (1986) J. Biol. Chem. 261, 6993-7000), exerts potent stimulatory effects on [3H]thymidine incorporation into DNA and glucose transport in Swiss 3T3 fibroblasts. MOG induces a rapid and sustained 2.5-fold increase in the cellular 1,2-diacylglycerol (1,2-DG) content, and phosphorylation of an acidic 80-kDa protein, a putative substrate for the protein kinase C (Ca2+/phospholipid-dependent protein kinase). The effect of MOG is additive to that of bombesin in terms of both an increase in tissue diacylglycerol content and phosphorylation of the 80-kDa proteins. In addition to these effects, MOG potently stimulates release of arachidonic acid from phospholipids. Inhibitors of cyclooxygenase and lipoxygenase have little effect, if any, on MOG-induced stimulation of glucose transport and DNA synthesis, while exogenously applied arachidonic readily stimulates both of these cellular responses. Furthermore, arachidonic acid, at its biologically active concentrations, is found to induce a rapid and sustained increase in cellular 1,2-DG content and stimulate the phosphorylation of the 80-kDa protein, although to a lesser extent than MOG. Prolonged pretreatment of the cells with phorbol 12,13-dibutyrate, which reduces the cellular protein kinase C content, markedly attenuates the effects of both MOG and arachidonic acid on glucose transport and DNA synthesis. These data indicate that MOG increases endogenous 1,2-DG content and thereby acts as a potent activator of protein kinase C, and that activation of protein kinase C is a crucial step in MOG-induced stimulation of mitogenesis and glucose transport.  相似文献   

19.
Kim IS  Jang SW  Sung HJ  Lee JS  Ko J 《FEBS letters》2005,579(27):6044-6048
Human CC chemokine-4 (HCC-4)/CCL16 is a chemoattractant for monocytes and lymphocytes. Although HCC-4 binds to multiple CC chemokine receptors, the receptor-mediated signal transduction pathway induced by HCC-4 has not been characterized. Human osteogenic sarcoma cells stably expressing CCR1 were used to investigate HCC-4-mediated chemotaxis signaling events via CCR1. The chemotactic activity of HCC-4 as well as those of other CCR1-dependent chemokines including MIP-1alpha/CCL3, RANTES/CCL5, and Lkn-1/CCL15 was inhibited by the treatment of pertussis toxin, an inhibitor of Gi/Go protein, U73122, an inhibitor of phospholipase C (PLC), and rottlerin, a specific inhibitor of protein kinase Cdelta (PKCdelta). These results indicate that HCC-4-induced chemotaxis signaling is mediated through Gi/Go protein, PLC, and PKCdelta. SB202190, an inhibitor of p38 mitogen activated protein kinase, only blocked the chemotactic activity of HCC-4, but not those of other CCR1-dependent chemokines. SB202190 inhibited HCC-4-induced chemotaxis in a dose-dependent manner (P < 0.01). HCC-4 induces p38 activation in both a time and dose-dependent manner. However, such p38 activation was not induced by other CCR1-dependent chemokines. To further investigate the differential effect of HCC-4, the Ca2+ mobilization was examined. HCC-4 induced no intracellular Ca2+ flux in contrast to other CCR1-dependent chemokines. These results indicate that HCC-4 transduces signals differently from other CCR1-dependent chemokines and may play different roles in the immune response.  相似文献   

20.
A peptide mitogen bombesin, which activates the phospholipase C-protein kinase C signaling pathway, induces a mepacrine-sensitive, dose-dependent increase in the release of [3H]arachidonic acid and its metabolites ([3H]AA) from prelabeled Swiss 3T3 fibroblasts. The effect is temporally composed of two phases, i.e. an initial transient burst that is essentially independent of extracellular Ca2+, and a following sustained phase that is absolutely dependent on the extracellular Ca2+. The initial transient [3H]AA liberation occurs concomitantly with bombesin-induced 45Ca efflux from prelabeled cells: both responses being substantially attenuated by loading cells with a Ca2+ chelator quin2. However, bombesin-induced intracellular Ca2+ mobilization by itself is not sufficient as a signal for the initial transient [3H]AA liberation, since A23187 potently stimulates 45Ca efflux to an extent comparable to bombesin but fails to induce [3H]AA release in the absence of extracellular Ca2+. The second sustained phase of the bombesin-induced [3H]AA release is abolished by reducing extracellular Ca2+ to 0.03 mM, although bombesin effects on phospholipase C and protein kinase C activation are barely affected by the same procedure. A protein kinase C activator phorbol 12,13-dibutyrate induces an extracellular Ca(2+)-dependent, slowly developing sustained increase in [3H]AA release, and markedly potentiates both phases of bombesin-induced [3H]AA release. Down-regulation of cellular protein kinase C completely abolishes all of the effects of phorbol dibutyrate, and partially inhibits the second but not the first phase of bombesin-induced [3H]AA release. These results indicate that bombesin-induced receptor-mediated activation of phospholipase A2 involves multiple mechanisms, including intracellular Ca2+ mobilization for the first phase, protein kinase C activation plus Ca2+ influx for the second phase, and as yet unknown mechanism(s) independent of intracellular Ca2+ mobilization or protein kinase C for both of the phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号