首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under anaerobic conditions, the flavodiiron NO-reductase from Escherichia coli (flavorubredoxin, FlRd) constitutes one of the major protective enzymes against nitric oxide. The redox and spectroscopic properties of the rubredoxin (Rd), non-heme diiron, and FMN sites of flavorubredoxin were determined, which was complemented by the study of truncated versions of FlRd: one consisting only of its rubredoxin module, and another consisting of its flavodiiron structural core (lacking the Rd domain). The studies here reported were performed by a combination of potentiometry with visible and EPR spectroscopies. Moreover, we present the first direct EPR evidence for the presence of the non-heme diiron site in the flavodiiron proteins family. Also, the redox properties of the FlRd physiological partner, the NADH:flavorubredoxin oxidoreductase (FlRd-Red), were determined. It is further shown that the redox properties of this complex electron transfer system are fine-tuned upon interaction of the two enzymes.  相似文献   

2.
A novel two-component enzyme system from Escherichia coli involving a flavorubredoxin (FlRd) and its reductase was studied in terms of spectroscopic, redox, and biochemical properties of its constituents. FlRd contains one FMN and one rubredoxin (Rd) center per monomer. To assess the role of the Rd domain, FlRd and a truncated form lacking the Rd domain (FlRdDeltaRd), were characterized. FlRd contains 2.9+/-0.5 iron atoms/subunit, whereas FlRdDeltaRd contains 2.1+/-0.6 iron atoms/subunit. While for FlRd one iron atom corresponds to the Rd center, the other two irons, also present in FlRdDeltaRd, are most probably due to a di-iron site. Redox titrations of FlRd using EPR and visible spectroscopies allowed us to determine that the Rd site has a reduction potential of -140+/-15 mV, whereas the FMN undergoes reduction via a red-semiquinone, at -140+/-15 mV (Fl(ox)/Fl(sq)) and -180+/-15 mV (Fl(sq)/Fl(red)), at pH 7.6. The Rd site has the lowest potential ever reported for a Rd center, which may be correlated with specific amino acid substitutions close to both cysteine clusters. The gene adjacent to that encoding FlRd was found to code for an FAD-containing protein, (flavo)rubredoxin reductase (FlRd-reductase), which is capable of mediating electron transfer from NADH to Desulfovibrio gigas Rd as well as to E. coli FlRd. Furthermore, electron donation was found to proceed through the Rd domain of FlRd as the Rd-truncated protein does not react with FlRd-reductase. In vitro, this pathway links NADH oxidation with dioxygen reduction. The possible function of this chain is discussed considering the presence of FlRd homologues in all known genomes of anaerobes and facultative aerobes.  相似文献   

3.
Escherichia coli flavorubredoxin (FlRd) belongs to the family of flavodiiron proteins (FDPs), microbial enzymes that are expressed to scavenge nitric oxide (NO) under anaerobic conditions. To degrade NO, FlRd has to be reduced by NADH via the FAD-binding protein flavorubredoxin reductase, thus the kinetics of electron transfer along this pathway was investigated by stopped-flow absorption spectroscopy. We found that NADH, but not NADPH, quickly reduces the FlRd-reductase (k = 5.5 +/- 2.2 x 10(6) M(-1).s(-1) at 5 degrees C), with a limiting rate of 255 +/- 17 s(-1). The reductase in turn quickly reduces the rubredoxin (Rd) center of FlRd, as assessed at 5 degrees C working with the native FlRd enzyme (k = 2.4 +/- 0.1 x 10(6) m(-1).s(-1)) and with its isolated Rd-domain (k approximately 1 x 10(7) M(-1).s(-1)); in both cases the reaction was found to be dependent on pH and ionic strength. In FlRd the fast reduction of the Rd center occurs synchronously with the formation of flavin mononucleotide semiquinone. Our data provide evidence that (a) FlRd-reductase rapidly shuttles electrons between NADH and FlRd, a prerequisite for NO reduction in this detoxification pathway, and (b) the electron accepting site in FlRd, the Rd center, is in very fast redox equilibrium with the flavin mononucleotide.  相似文献   

4.
Escherichia coli flavorubredoxin is a member of the family of the A-type flavoproteins, which are built by two core domains: a metallo-beta-lactamase-like domain, at the N-terminal region, harboring a non-heme di-iron site, and a flavodoxin-like domain, containing one FMN moiety. The enzyme from E. coli has an extra module at the C terminus, containing a rubredoxin-like center. The A-type flavoproteins are widespread among strict and facultative anaerobes, as deduced from the analysis of the complete prokaryotic genomes. In this report we showed that the recombinant enzyme purified from E. coli has nitric-oxide reductase activity with a turnover number of approximately 15 mol of NO.mol enzyme(-1).s(-1), which was well within the range of those determined for the canonical heme b(3)-Fe(B) containing nitric-oxide reductases (e.g. approximately 10-50 mol NO.mol enzyme(-1).s(-1) for the Paracoccus denitrificans NOR). Furthermore, it was shown that the activity was due to the A-type flavoprotein core, as the rubredoxin domain alone exhibited no activity. Thus, a novel family of prokaryotic NO reductases, with a non-heme di-iron site as the catalytic center, was established.  相似文献   

5.
Microaerophilic pathogens such as Giardia lamblia, Entamoeba histolytica, and Trichomonas vaginalis have robust oxygen consumption systems to detoxify oxygen and maintain intracellular redox balance. This oxygen consumption results from H2O-forming NADH oxidase (NOX) activity of two distinct flavin-containing systems: H2O-forming NOXes and multicomponent flavodiiron proteins (FDPs). Neither system is membrane bound, and both recycle NADH into oxidized NAD+ while simultaneously removing O2 from the local environment. However, little is known about the specific contributions of these systems in T. vaginalis. In this study, we use bioinformatics and biochemical analyses to show that T. vaginalis lacks a NOX–like enzyme and instead harbors three paralogous genes (FDPF1–3), each encoding a natural fusion product between the N-terminal FDP, central rubredoxin (Rb), and C-terminal NADH:Rb oxidoreductase domains. Unlike a “stand-alone” FDP that lacks Rb and oxidoreductase domains, this natural fusion protein with fully populated flavin redox centers directly accepts reducing equivalents of NADH to catalyze the four-electron reduction of oxygen to water within a single polypeptide with an extremely high turnover. Furthermore, using single-particle cryo-EM, we present structural insights into the spatial organization of the FDP core within this multidomain fusion protein. Together, these results contribute to our understanding of systems that allow protozoan parasites to maintain optimal redox balance and survive transient exposure to oxic conditions.  相似文献   

6.
Flavodiiron proteins (FDPs) play key roles in biological response mechanisms against oxygen and/or nitric oxide; in particular they are present in oxygenic phototrophs (including cyanobacteria and gymnosperms). Two conserved domains define the core of this family of proteins: a N-terminal metallo-β-lactamase-like domain followed by a C-terminal flavodoxin-like one, containing the catalytic diiron centre and a FMN cofactor, respectively. Members of the FDP family may present extra modules in the C-terminus, and were classified into several classes according to their distribution and composition. The cyanobacterium Synechocystis sp. PCC6803 contains four Class C FDPs (Flv1-4) that include at the C-terminus an additional NAD(P)H:flavin oxidoreductase (FlR) domain. Two of them (Flv3 and Flv4) have the canonical diiron ligands (Class C, Type 1), while the other two (Flv1 and Flv2) present different residues in that region (Class C, Type 2). Most phototrophs, either Bacterial or Eukaryal, contain at least two FDP genes, each encoding for one of those two types. Crystals of the Flv1 two core domains (Flv1-ΔFlR), without the C-terminal NAD(P)H:flavin oxidoreductase extension, were obtained and the structure was determined. Its pseudo diiron site contains non-canonical basic and neutral residues, and showed anion moieties, instead. The presented structure revealed for the first time the structure of the two-domain core of a Class C-Type 2 FDP.  相似文献   

7.
The simian virus 40 origin of replication contains a 20-base-pair adenine-thymine-rich segment with the sequence 5'-TGCATAAATAAAAAAAATTA-3'. The continuous tract of eight adenines is highly conserved among polyomaviruses. We used single-base substitutions to map structural and functional features of this DNA. Mutations in the AAA and AAAAAAAATT sequences significantly reduce DNA replication and thus identify two sequence-specific functional domains or a single domain with two parts. The AAAAAAAATT sequence also determines a DNA conformation that is characteristic of DNA bending. Single-base mutations in this domain change the degree of net bending, presumably by altering the length and location of the bending sequence. Thus, DNA bending in the correct conformation and location may be a structural signal for replication in polyomavirus origins and perhaps in other origins of replication with consecutive runs of adenines. The first five base pairs (TGCAT) of the 20-base-pair segment and the T between the AAA and AAAAAAAATT domains serve a sequence-independent function that may establish proper spacing within the core origin.  相似文献   

8.
The purification, amino acid sequence, and two-dimensional 1H NMR results are reported for the rubredoxin (Rd) from the hyperthermophilic archaebacterium Pyrococcus furiosus, an organism that grows optimally at 100 degrees C. The molecular mass (5397 Da), iron content (1.2 +/- 0.2 g-atom of Fe/mol), UV-vis spectrophotometric properties, and amino acid sequence (60% sequence identity with Clostridium pasteurianum Rd) are found to be typical of this class of redox protein. However, P. furiosus Rd is remarkably thermostable, being unaffected after incubation for 24 h at 95 degrees C. One- and two-dimensional 1H nuclear magnetic resonance spectra of the oxidized [Fe(III)Rd] and reduced [Fe(II)Rd] forms of P. furiosus Rd exhibited substantial paramagnetic line broadening, and this precluded detailed 3D structural studies. The apoprotein was not readily amenable to NMR studies due to apparent protein oxidation involving the free cysteine sulfhydryls. However, high-quality NMR spectra were obtained for the Zn-substituted protein, Zn(Rd), enabling detailed NMR signal assignment for all backbone amide and alpha and most side-chain protons. Secondary structural elements were determined from qualitative analysis of 2D Overhauser effect spectra. Residues A1-K6, Y10-E14, and F48-E51 form a three-strand antiparallel beta-sheet, which comprises ca. 30% of the primary sequence. Residues C5-Y10 and C38-A43 form types I and II amide-sulfur tight turns common to iron-sulfur proteins. These structural elements are similar to those observed by X-ray crystallography for native Rd from the mesophile C. pasteurianum. However, the beta-sheet domain in P. furiosus Rd is larger than that in C. pasteurianum Rd and appears to begin at the N-terminal residue. From analysis of the secondary structure, potentially stabilizing electrostatic interactions involving the charged groups of residues Ala(1), Glu(14), and Glu(52) are proposed. These interactions, which are not present in rubredoxins from mesophilic organisms, may prevent the beta-sheet from "unzipping" at elevated temperatures.  相似文献   

9.
The crystal structure of simian immunodeficiency virus (SIV) integrase that contains in a single polypeptide the core and the C-terminal deoxyoligonucleotide binding domain has been determined at 3 A resolution with an R-value of 0.203 in the space group P2(1)2(1)2(1). Four integrase core domains and one C-terminal domain are found to be well defined in the asymmetric unit. The segment extending from residues 114 to 121 assumes the same position as seen in the integrase core domain of avian sarcoma virus as well as human immunodeficiency virus type-1 (HIV-1) crystallized in the absence of sodium cacodylate. The flexible loop in the active site, composed of residues 141-151, remains incompletely defined, but the location of the essential Glu152 residue is unambiguous. The residues from 210-218 that link the core and C-terminal domains can be traced as an extension from the core with a short gap at residues 214-215. The C(alpha) folding of the C-terminal domain is similar to the solution structure of this domain from HIV-1 integrase. However, the dimeric form seen in the NMR structure cannot exist as related by the non-crystallographic symmetry in the SIV integrase crystal. The two flexible loops of the C-terminal domain, residues 228-236 and residues 244-249, are much better fixed in the crystal structure than in the NMR structure with the former in the immediate vicinity of the flexible loop of the core domain. The interface between the two domains encompasses a solvent-exclusion area of 1500 A(2). Residues from both domains purportedly involved in DNA binding are narrowly distributed on the same face of the molecule. They include Asp64, Asp116, Glu152 and Lys159 from the core and Arg231, Leu234, Arg262, Arg263 and Lys264 from the C-terminal domain. A model for DNA binding is proposed to bridge the two domains by tethering the 228-236 loop of the C-terminal domain and the flexible loop of the core.  相似文献   

10.
BackgroundProtein domains display a range of structural diversity, with numerous additions and deletions of secondary structural elements between related domains. We have observed a small number of cases of surprising large-scale deletions of core elements of structural domains. We propose a new concept called domain atrophy, where protein domains lose a significant number of core structural elements.ResultsHere, we implement a new pipeline to systematically identify new cases of domain atrophy across all known protein sequences. The output of this pipeline was carefully checked by hand, which filtered out partial domain instances that were unlikely to represent true domain atrophy due to misannotations or un-annotated sequence fragments. We identify 75 cases of domain atrophy, of which eight cases are found in a three-dimensional protein structure and 67 cases have been inferred based on mapping to a known homologous structure. Domains with structural variations include ancient folds such as the TIM-barrel and Rossmann folds. Most of these domains are observed to show structural loss that does not affect their functional sites.ConclusionOur analysis has significantly increased the known cases of domain atrophy. We discuss specific instances of domain atrophy and see that there has often been a compensatory mechanism that helps to maintain the stability of the partial domain. Our study indicates that although domain atrophy is an extremely rare phenomenon, protein domains under certain circumstances can tolerate extreme mutations giving rise to partial, but functional, domains.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0655-8) contains supplementary material, which is available to authorized users.  相似文献   

11.
RNA processing and turnover play important roles in the maturation, metabolism and quality control of a large variety of RNAs thereby contributing to gene expression and cellular health. The TRAMP complex, composed of Air2p, Trf4p and Mtr4p, stimulates nuclear exosome-dependent RNA processing and degradation in Saccharomyces cerevisiae. The Mtr4 protein structure is composed of a helicase core and a novel so-called arch domain, which protrudes from the core. The helicase core contains highly conserved helicase domains RecA-1 and 2, and two structural domains of unclear functions, winged helix domain (WH) and ratchet domain. How the structural domains (arch, WH and ratchet domain) coordinate with the helicase domains and what roles they are playing in regulating Mtr4p helicase activity are unknown. We created a library of Mtr4p structural domain mutants for the first time and screened for those defective in the turnover of TRAMP and exosome substrate, hypomodified tRNAiMet. We found these domains regulate Mtr4p enzymatic activities differently through characterizing the arch domain mutants K700N and P731S, WH mutant K904N, and ratchet domain mutant R1030G. Arch domain mutants greatly reduced Mtr4p RNA binding, which surprisingly did not lead to significant defects on either in vivo tRNAiMet turnover, or in vitro unwinding activities. WH mutant K904N and Ratchet domain mutant R1030G showed decreased tRNAiMet turnover in vivo, as well as reduced RNA binding, ATPase and unwinding activities of Mtr4p in vitro. Particularly, K904 was found to be very important for steady protein levels in vivo. Overall, we conclude that arch domain plays a role in RNA binding but is largely dispensable for Mtr4p enzymatic activities, however the structural domains in the helicase core significantly contribute to Mtr4p ATPase and unwinding activities.  相似文献   

12.
The crystal structures of the Met148Leu and Ser86Asp mutants of rusticyanin are presented at 1.82 and 1.65 A resolution, respectively. Both of these structures have two molecules in the asymmetric unit compared to the one present in the crystal form of the native protein. This provides an opportunity to investigate intramolecular electron transfer pathways in rusticyanin. The redox potential of the Met148Leu mutant ( approximately 800 mV) is elevated compared to that of the native protein ( approximately 670 mV at pH 3.2) while that of the Ser86Asp mutant ( approximately 623 mV at pH 3.2) is decreased. The effect of the Ser86Asp mutation on the hydrogen bonding near the type 1 Cu site is discussed and hence its role in determining acid stability is examined. The type 1 Cu site of Met148Leu mimics the structural and biochemical characteristics of those found in domain II of ceruloplasmin and fungal laccase. Moreover, the native rusticyanin's cupredoxin core and the type 1 Cu site closely resemble those found in ascorbate oxidase and nitrite reductase. Structure based phylogenetic trees have been re-examined in view of the additional structural data on rusticyanin and fungal laccase. We confirm that rusticyanin is in the same class as nitrite reductase domain 2, laccase domain 3 and ceruloplasmin domains 2, 4 and 6.  相似文献   

13.
The molecular mechanism of mRNA degradation in the chloroplast consists of sequential events, including endonucleolytic cleavage, the addition of poly(A)-rich sequences to the endonucleolytic cleavage products, and exonucleolytic degradation. In spinach chloroplasts, the latter two steps of polyadenylation and exonucleolytic degradation are performed by the same phosphorolytic and processive enzyme, polynucleotide phosphorylase (PNPase). An analysis of its amino acid sequence shows that the protein is composed of two core domains related to RNase PH, two RNA binding domains (KH and S1), and an alpha-helical domain. The amino acid sequence and domain structure is largely conserved between bacteria and organelles. To define the molecular mechanism that controls the two opposite activities of this protein in the chloroplast, the ribonuclease, polymerase, and RNA binding properties of each domain were analyzed. The first core domain, which was predicted to be inactive in the bacterial enzymes, was active in RNA degradation but not in polymerization. Surprisingly, the second core domain was found to be active in degrading polyadenylated RNA only, suggesting that nonpolyadenylated molecules can be degraded only if tails are added, apparently by the same protein. The poly(A) high-binding-affinity site was localized to the S1 domain. The complete spinach chloroplast PNPase, as well as versions containing the core domains, complemented the cold sensitivity of an Escherichia coli PNPase-less mutant. Phylogenetic analyses of the two core domains showed that the two domains separated very early, resulting in the evolution of the bacterial and organelle PNPases and the exosome proteins found in eukaryotes and some archaea.  相似文献   

14.
Dematin (band 4.9) is an F-actin binding and bundling protein best known for its role within red blood cells, where it both stabilizes as well as attaches the spectrin/actin cytoskeleton to the erythrocytic membrane. Here, we investigate the structural consequences of phosphorylating serine 381, a covalent modification that turns off F-actin bundling activity. In contrast to the canonical doctrine, in which phosphorylation of an intrinsically disordered region/protein confers affinity for another domain/protein, we found the converse to be true of dematin: phosphorylation of the well folded C-terminal villin-type headpiece confers affinity for its intrinsically disordered N-terminal core domain. We employed analytical ultracentrifugation to demonstrate that dematin is monomeric, in contrast to the prevailing view that it is trimeric. Next, using a series of truncation mutants, we verified that dematin has two F-actin binding sites, one in the core domain and the other in the headpiece domain. Although the phosphorylation-mimicking mutant, S381E, was incapable of bundling microfilaments, it retains the ability to bind F-actin. We found that a phosphorylation-mimicking mutant, S381E, eliminated the ability to bundle, but not bind F-actin filaments. Lastly, we show that the S381E point mutant caused the headpiece domain to associate with the core domain, leading us to the mechanism for cAMP-dependent kinase control of dematin''s F-actin bundling activity: when unphosphorylated, dematin''s two F-actin binding domains move independent of one another permitting them to bind different F-actin filaments. Phosphorylation causes these two domains to associate, forming a compact structure, and sterically eliminating one of these F-actin binding sites.  相似文献   

15.
BACKGROUND: Nonribosomal peptide synthetases (NRPSs) are large modular enzymes responsible for the synthesis of a variety of microbial bioactive peptides. They consist of modules that each recognise and incorporate one specific amino acid into the peptide product. A module comprises several domains, which carry out the individual reaction steps. After activation by the adenylation domain, the amino acid substrate is covalently tethered to a 4'-phosphopantetheinyl cofactor of a peptidyl carrier domain (PCP) that passes the substrate to the reaction centres of the consecutive domains. RESULTS: The solution structure of PCP, a distinct peptidyl carrier protein derived from the equivalent domain of an NRPS, was solved using NMR techniques. PCP is a distorted four-helix bundle with an extended loop between the first two helices. Its overall fold resembles the topology of acyl carrier proteins (ACPs) from Escherichia coli fatty acid synthase and actinorhodin polyketide synthase from Streptomyces coelicolor; however, the surface polarity and the length and relative alignment of the helices are different. The conserved serine, which is the cofactor-binding site, has the same location as in the ACPs and is situated within a stretch of seven flexible residues. CONCLUSIONS: The structure of PCP reflects its character as a protein domain. The fold is well defined between residues 8 and 82 and the structural core of the PCP domain can now be defined as a region spanning 37 amino acids in both directions from the conserved serine. The flexibility of the post-translationally modified site might have implications for interactions with the cooperating proteins or NRPS domains.  相似文献   

16.
The EBNA1 (for Epstein-Barr nuclear antigen 1) protein of Epstein-Barr virus governs the replication and partitioning of the viral genomes during latent infection by binding to specific recognition sites in the viral origin of DNA replication. The crystal structure of the DNA binding portion of the EBNA1 protein revealed that this region comprises two structural motifs; a core domain, which mediates protein dimerization and is structurally homologous to the DNA binding domain of the papillomavirus E2 protein, and a flanking domain, which mediated all the observed sequence-specific contacts. To test the possibility that the EBNA1 core domain plays a role in sequence-specific DNA binding not revealed in the crystal structure, we examined the effects of point mutations in potential hydrogen bond donors located in an alpha-helix of the EBNA1 core domain whose structural homologue in E2 mediates sequence-specific DNA binding. We show that these mutations severely reduce the affinity of EBNA1 for its recognition site, and that the core domain, when expressed in the absence of the flanking domain, has sequence-specific DNA binding activity. Flanking domain residues were also found to contribute to the DNA binding activity of EBNA1. Thus, both the core and flanking domains of EBNA1 play direct roles in DNA recognition.  相似文献   

17.
Disulfide bond formation in the endoplasmic reticulum is catalyzed by enzymes of the protein disulfide-isomerase family that harbor one or more thioredoxin-like domains. We recently discovered the transmembrane protein TMX3, a thiol-disulfide oxidoreductase of the protein disulfide-isomerase family. Here, we show that the endoplasmic reticulum-luminal region of TMX3 contains three thioredoxin-like domains, an N-terminal redox-active domain (named a) followed by two enzymatically inactive domains (b and b'). Using the recombinantly expressed TMX3 domain constructs a, ab, and abb', we compared structural stability and enzymatic properties. By structural and biophysical methods, we demonstrate that the reduced a domain has features typical of a globular folded domain that is, however, greatly destabilized upon oxidization. Importantly, interdomain stabilization by the b domain renders the a domain more resistant toward chemical denaturation and proteolysis in both the oxidized and reduced form. In combination with molecular modeling studies of TMX3 abb', the experimental results provide a new understanding of the relationship between the multidomain structure of TMX3 and its function as a redox enzyme. Overall, the data indicate that in addition to their role as substrate and co-factor binding domains, redox-inactive thioredoxin-like domains also function in stabilizing neighboring redox-active domains.  相似文献   

18.
Human topoisomerase I is a 765-residue protein composed of four major domains as follows: the unconserved and highly charged NH(2)-terminal domain, a conserved core domain, the positively charged linker region, and the highly conserved COOH-terminal domain containing the active site tyrosine. Previous studies of the domain structure revealed that near full topoisomerase I activity can be reconstituted in vitro by fragment complementation between recombinant polypeptides approximating the core and COOH-terminal domains. Here we demonstrate that deletion of linker residues Asp(660) to Lys(688) yields an active enzyme (topo70DeltaL) that purifies as both a monomer and a dimer. The dimer is shown to result from domain swapping involving the COOH-terminal and core domains of the two subunits. The monomeric form is insensitive to the anti-tumor agent camptothecin and distributive during in vitro plasmid relaxation assays, whereas the dimeric form is camptothecin-sensitive and processive. However, the addition of camptothecin to enzyme/DNA mixtures causes enhancement of SDS-induced breakage by both monomeric and dimeric forms of the mutant enzyme. The similarity of the dimeric form to the wild type enzyme suggests that some structural feature of the dimer is providing a surrogate linker. Yeast cells expressing topo70DeltaL were found to be insensitive to camptothecin.  相似文献   

19.
BACKGROUND: ADP-L-glycero--mannoheptose 6-epimerase (AGME) is required for lipopolysaccharide (LPS) biosynthesis in most genera of pathogenic and non-pathogenic Gram-negative bacteria. It catalyzes the interconversion of ADP-D-glycero-D-mannoheptose and ADP-L-glycero-D-mannoheptose, a precursor of the seven-carbon sugar L-glycero-mannoheptose (heptose). Heptose is an obligatory component of the LPS core domain; its absence results in a truncated LPS structure resulting in susceptibility to hydrophobic antibiotics. Heptose is not found in mammalian cells, thus its biosynthetic pathway in bacteria presents a unique target for the design of novel antimicrobial agents. RESULTS: The structure of AGME, in complex with NADP and the catalytic inhibitor ADP-glucose, has been determined at 2.0 A resolution by multiwavelength anomalous diffraction (MAD) phasing methods. AGME is a homopentameric enzyme, which crystallizes with two pentamers in the asymmetric unit. The location of 70 crystallographically independent selenium sites was a key step in the structure determination process. Each monomer comprises two domains: a large N-terminal domain, consisting of a modified seven-stranded Rossmann fold that is associated with NADP binding; and a smaller alpha/beta C-terminal domain involved in substrate binding. CONCLUSIONS: The first structure of an LPS core biosynthetic enzyme leads to an understanding of the mechanism of the conversion between ADP-D-glycero--mannoheptose and ADP-L-glycero-D-mannoheptose. On the basis of its high structural similarity to UDP-galactose epimerase and the three-dimensional positions of the conserved residues Ser116, Tyr140 and Lys144, AGME was classified as a member of the short-chain dehydrogenase/reductase (SDR) superfamily. This study should prove useful in the design of mechanistic and structure-based inhibitors of the AGME catalyzed reaction.  相似文献   

20.
Biological electron transfer is an efficient process even though the distances between the redox moieties are often quite large. It is therefore of great interest to gain an understanding of the physical basis of the rates and driving forces of these reactions. The structural relaxation of the protein that occurs upon change in redox state gives rise to the reorganizational energy, which is important in the rates and the driving forces of the proteins involved. To determine the structural relaxation in a redox protein, we have developed methods to hold a redox protein in its final oxidation state during crystallization while maintaining the same pH and salt conditions of the crystallization of the protein in its initial oxidation state. Based on 1.5 A resolution crystal structures and molecular dynamics simulations of oxidized and reduced rubredoxins (Rd) from Clostridium pasteurianum (Cp), the structural rearrangements upon reduction suggest specific mechanisms by which electron transfer reactions of rubredoxin should be facilitated. First, expansion of the [Fe-S] cluster and concomitant contraction of the NH...S hydrogen bonds lead to greater electrostatic stabilization of the extra negative charge. Second, a gating mechanism caused by the conformational change of Leucine 41, a nonpolar side chain, allows transient penetration of water molecules, which greatly increases the polarity of the redox site environment and also provides a source of protons. Our method of producing crystals of Cp Rd from a reducing solution leads to a distribution of water molecules not observed in the crystal structure of the reduced Rd from Pyrococcus furiosus. How general this correlation is among redox proteins must be determined in future work. The combination of our high-resolution crystal structures and molecular dynamics simulations provides a molecular picture of the structural rearrangement that occurs upon reduction in Cp rubredoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号