首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two novel proteins activate superoxide generation by the NADPH oxidase NOX1   总被引:16,自引:0,他引:16  
NOX1, an NADPH oxidase expressed predominantly in colon epithelium, shows a high degree of similarity to the phagocyte NADPH oxidase. However, superoxide generation by NOX1 has been difficult to demonstrate. Here we show that NOX1 generates superoxide when co-expressed with the p47(phox) and p67(phox) subunits of the phagocyte NADPH oxidase but not when expressed by itself. Since p47(phox) and p67(phox) are restricted mainly to myeloid cells, we searched for their homologues and identified two novel cDNAs. The mRNAs of both homologues were found predominantly in colon epithelium. Differences between the homologues and the phagocyte NADPH oxidase subunits included the lack of the autoinhibitory domain and the protein kinase C phosphorylation sites in the p47(phox) homologue as well as the absence of the first Src homology 3 domain and the presence of a hydrophobic stretch in the p67(phox) homologue. Co-expression of NOX1 with the two novel proteins led to stimulus-independent high level superoxide generation. Stimulus dependence of NOX1 was restored when p47(phox) was used to replace its homologue. In conclusion, NOX1 is a superoxide-generating enzyme that is activated by two novel proteins, which we propose to name NOXO1 (NOX organizer 1) and NOXA1 (NOX activator 1).  相似文献   

2.
Rotenone, a widely used pesticide, reproduces parkinsonism in rodents and associates with increased risk for Parkinson disease. We previously reported that rotenone increased superoxide production by stimulating the microglial phagocyte NADPH oxidase (PHOX). This study identified a novel mechanism by which rotenone activates PHOX. Ligand-binding assay revealed that rotenone directly bound to membrane gp91(phox), the catalytic subunit of PHOX; such binding was inhibited by diphenyleneiodonium, a PHOX inhibitor with a binding site on gp91(phox). Functional studies showed that both membrane and cytosolic subunits were required for rotenone-induced superoxide production in cell-free systems, intact phagocytes, and COS7 cells transfected with membrane subunits (gp91(phox)/p22(phox)) and cytosolic subunits (p67(phox) and p47(phox)). Rotenone-elicited extracellular superoxide release in p47(phox)-deficient macrophages suggested that rotenone enabled activation of PHOX through a p47(phox)-independent mechanism. Increased membrane translocation of p67(phox), elevated binding of p67(phox) to rotenone-treated membrane fractions, and coimmunoprecipitation of p67(phox) and gp91(phox) in rotenone-treated wild-type and p47(phox)-deficient macrophages indicated that p67(phox) played a critical role in rotenone-induced PHOX activation via its direct interaction with gp91(phox). Rac1, a Rho-like small GTPase, enhanced p67(phox)-gp91(phox) interaction; Rac1 inhibition decreased rotenone-elicited superoxide release. In conclusion, rotenone directly interacted with gp91(phox); such an interaction triggered membrane translocation of p67(phox), leading to PHOX activation and superoxide production.  相似文献   

3.
An NADPH oxidase is thought to be a main source of vascular superoxide (O(2)(-)) production. The functional role of this oxidase, however, and the contribution of the different subunits of the enzyme to cellular signaling are still incompletely understood. We determined the role of the p47phox subunit of the oxidase in O(2)(-) generation and signaling in aortic rings and cultured smooth muscle cells (SMC) from wild-type (WT) and p47phox-deficient (p47phox -/-) mice. Basal O(2)(-) levels in aortae of p47phox -/- mice were lower than those in WT aortae. Infusion of [val(5)]-angiotensin II increased O(2)(-) levels in aortae from WT more than in aortae from p47phox -/- mice. O(2)(-) generation was similar in quiescent SMC from WT and p47phox -/- mice. However, exposure to thrombin selectively increased O(2)(-) generation in VSMC from WT, but not from p47phox -/- mice. Thrombin-activated redox-mediated signal transduction and gene expression was attenuated in VSMC from p47phox -/- compared to cells from WT mice as determined by p38 MAP kinase activation and VEGF gene expression. We conclude that p47phox is important for vascular ROS production and redox-modulated signaling and gene expression in VSMC.  相似文献   

4.
Like macrophages, microglia are functionally polarized into different phenotypic activation states, referred as classical and alternative. The balance of the two phenotypes may be critical to ensure proper brain homeostasis, and may be altered in brain pathological states, such as Alzheimer's disease. We investigated the role of NADPH oxidase in microglial activation state using p47(phox) and gp91(phox) -deficient mice as well as apocynin, a NADPH oxidase inhibitor during neuroinflammation induced by an intracerebroventricular injection of LPS or Aβ????. We showed that NADPH oxidase plays a critical role in the modulation of microglial phenotype and subsequent inflammatory response. We demonstrated that inhibition of NADPH oxidase or gene deletion of its functional p47(phox) subunit switched microglial activation from a classical to an alternative state in response to an inflammatory challenge. Moreover, we showed a shift in redox state towards an oxidized milieu and that subpopulations of microglia retain their detrimental phenotype in Alzheimer's disease brains. Microglia can change their activation phenotype depending on NADPH oxidase-dependent redox state of microenvironment. Inhibition of NADPH oxidase represents a promising neuroprotective approach to reduce oxidative stress and modulate microglial phenotype towards an alternative state.  相似文献   

5.
Site-directed mutagenesis was used to generate a series of mutants harboring point or multiple substitutions within the hydrophilic, polybasic domain of gp91(phox) encompassed by residues 86-102, which was previously identified as a site of interaction with p47(phox) during phagocyte NADPH oxidase assembly. Recombinant wild-type or mutant gp91(phox) was expressed in a human myeloid leukemia cell line in which the endogenous gp91(phox) gene was disrupted by gene targeting. NADPH oxidase activity was measured in a cytochrome c reduction assay following granulocytic differentiation of cells that expressed recombinant gp91(phox). Expression of a gp91(phox) mutant in which amino acids 89-97 were replaced with nine alternate amino acids abolished NADPH oxidase activity. Expression of gp91(phox) mutants R89T, D95A, D95R, R96A, R96E, or K102T did not significantly affect NADPH oxidase activity. However, mutations of individual or paired arginine residues at positions 91 and 92 had substantial effects on superoxide generation. The R91E/R92E mutation completely abolished both NADPH oxidase activity and membrane-translocation of the cytosolic oxidase proteins p47(phox), p67(phox), Rac1, and Rac2. The phorbol 12-myristate 13-acetate-induced rate of superoxide production was reduced by approximately 75% in cells expressing R91T/R92A, R91E, or R92E gp91(phox) along with an increased lag time to the maximal rates of superoxide production relative to cells expressing wild-type gp91(phox). Taken together, these results demonstrate that Arg91 and Arg92 of gp91(phox) are essential for flavocytochrome b558 function in granulocytes and suggest that these residues participate in the interaction of gp91(phox) with the cytosolic oxidase proteins.  相似文献   

6.
Reactive oxygen species (ROS) derived from vascular NADPH oxidase are important in normal and pathological regulation of vessel growth and function. Cell-specific differences in expression and function of the catalytic subunit of NADPH oxidase may contribute to differences in vascular cell response to NADPH oxidase activation. We examined the functional expression of gp91phox on NADPH oxidase activity in vascular smooth muscle cells (SMC) and fibroblasts (FB). As measured by dihydroethidium fluorescence in situ, superoxide (O2-*) levels were greater in adventitial cells compared with medial SMC in wild-type aorta. In contrast, there was no difference in O2-* levels between adventitial cells and medial SMC in aorta from gp91phox-deficient (gp91phox KO) mice. Adventitial-derived FB and medial SMC were isolated from the aorta of wild-type and gp91phox KO mice and grown in culture. Consistent with the observations in situ, basal and stimulated ROS levels were reduced in FB isolated from aorta of gp91phox KO compared with FB from wild-type aorta, whereas ROS levels were similar in SMC derived from gp91phox KO and wild-type aorta. There were no differences in expression of superoxide dismutase between gp91phox KO and wild-type FB to account for these observations. Because gp91phox is associated with membranes, we examined NADPH-stimulated O2-. production in membrane-enriched fractions of cell lysate. As measured by chemiluminescence, NADPH oxidase activity was markedly greater in wild-type FB compared with gp91phox KO FB but did not differ among the SMCs. Confirming functional expression of gp91phox in FB, antisense to gp91phox decreased ROS levels in wild-type FB. Finally, deficiency of gp91phox did not alter expression of the gp91phox homolog NOX4 in isolated FB. We conclude that the neutrophil subunit gp91phox contributes to NADPH oxidase function in vascular FB, but not SMC.  相似文献   

7.
The NADPH oxidase of human monocytes is activated upon exposure to opsonized zymosan and a variety of other stimuli to catalyze the formation of superoxide anion. Assembly of the NADPH oxidase complex is believed to be a highly regulated process, and molecular mechanisms responsible for this regulation have yet to be fully elucidated. We have previously reported that cytosolic phospholipase A(2) (cPLA(2)) expression and activity are essential for superoxide anion production in activated human monocytes. In this study, we investigated the mechanisms involved in cPLA(2) regulation of NADPH oxidase activation by evaluating the effects of cPLA(2) on translocation and phosphorylation of p67(phox) and p47(phox). We report that translocation and phosphorylation of p67(phox), as well as p47(phox), occur upon activation of human monocytes and that decreased cPLA(2) protein expression, mediated by antisense oligodeoxyribonucleotides (AS-ODN) specific for cPLA(2) mRNA, blocked the stimulation-induced translocation of p47(phox) and p67(phox) from the cytosol to the membrane fraction. Inhibition of translocation of both p47(phox) and p67(phox) by cPLA(2) AS-ODN was above 85%. Arachidonic acid (AA), a product of cPLA(2) enzymatic activity, completely restored translocation of both of these oxidase components in the AS-ODN-treated, cPLA(2)-deficient human monocytes. These results represent the first report that cPLA(2) activity or AA is required for p67(phox) and p47(phox) translocation in human monocytes. Although cPLA(2) was required for translocation of p47(phox) and p67(phox), it did not influence phosphorylation of these components. These results suggest that one mechanism of cPLA(2) regulation of NADPH oxidase activity is to control the arachidonate-sensitive assembly of the complete oxidase complex through modulating the translocation of both p47(phox) and p67(phox). These studies provide insight into the mechanisms by which activation signals are transduced to allow the induction of superoxide anion production in human monocytes.  相似文献   

8.
The superoxide (O(2))-generating NADPH oxidase complex of phagocytes consists of a membrane-associated flavocytochrome (cytochrome b(559)) and four cytosolic proteins, p47(phox), p67(phox), p40(phox), and the small GTPase Rac (Rac1 or -2). NADPH oxidase activation (O(2) production) is elicited as the consequence of assembly of some or all cytosolic components with cytochrome b(559). This process can be reproduced in an in vitro system consisting of phagocyte membranes, p47(phox), p67(phox), and Rac, activated by an anionic amphiphile. We now show that post-translationally processed (prenylated) Rac1 initiates NADPH oxidase assembly, expressed in O(2) production, in a cell-free system containing phagocyte membrane vesicles and p67(phox), in the absence of an activating amphiphile and of p47(phox). Prenylated Cdc42Hs, a GTPase closely related to Rac, is inactive under the same conditions. Results obtained with phagocyte membrane vesicles can be reproduced fully by replacing these with partially purified cytochrome b(559), incorporated in phosphatidylcholine vesicles. Prenylated, but not nonprenylated, Rac1 binds spontaneously to phagocyte membrane vesicles and also to artificial, protein-free, phosphatidylcholine vesicles, a process counteracted by GDP dissociation inhibitor for Rho. Binding of prenylated Rac1 to membrane vesicles is accompanied by the recruitment of p67(phox) to the same location and the formation of an assembled NADPH oxidase complex, producing O(2) upon the addition of NADPH. Amphiphile and p47(phox)-independent NADPH oxidase activation by prenylated Rac1 is inhibited by Rho GDP dissociation inhibitor and by phosphatidylcholine vesicles, both competing with membrane for prenylated Rac1. We conclude that, in vitro, targeting of Rac to the phagocyte membrane is sufficient for the induction of NADPH oxidase assembly, suggesting that the principal or, possibly, the only role of Rac is to recruit cytosolic p67(phox) to the membrane environment, to be followed by the interaction of p67(phox) with cytochrome b(559).  相似文献   

9.
Phagocytosis of Leishmania donovani promastigotes is characterized by an inhibition of phagolysosome biogenesis mediated by the surface glycolipid lipophosphoglycan (LPG). However, the consequences of this inhibition on macrophage function remain to be determined. In this study, we investigated the impact of LPG-mediated phagosome remodelling on the assembly and function of the NADPH oxidase complex. Phagocytosis of both wild-type and LPG-defective L. donovani promastigotes triggered the release of similar levels of superoxide. However, wild-type promastigotes, but not LPG-defective mutants, inhibited generation of superoxide at the phagosome. Confocal microscopy imaging revealed that the membrane component gp91(phox) and the Rho-family GTPase Rac1 were present on phagosomes containing either wild-type or LPG-defective promastigotes. In contrast, the NADPH oxidase cytosolic components p47(phox) and p67(phox) were excluded from phagosomes in a LPG-dependent fashion. This inhibition is not the consequence of a general defect in the initiation of the NADPH oxidase activation process because both wild-type and LPG-defective promastigotes induced p47(phox) phosphorylation and the formation of complexes containing p47(phox) and p67(phox). Thus, by remodelling their intracellular habitat, L. donovani promastigotes prevent the assembly of a functional phagosomal NADPH oxidase complex, thereby evading an important host innate defence mechanism.  相似文献   

10.
We sought to determine whether the extracellular compartment contributed to seizure-induced superoxide (O2*-) production and to determine the role of the NADPH oxidase complex as a source of this O2*- production. The translocation of NADPH oxidase subunits (p47phox, p67phox and rac1) was assessed by immunoblot analysis and NADPH-driven O2*- production was measured using 2-(4-hydroxybenzyl)-6-(4-hydroxyphenyl)-8-benzyl-3,7-dihydroimidazo [1,2-alpha] pyrazin-3-one-enhanced chemiluminescence. Kainate-induced status epilepticus resulted in a time-dependent translocation of NADPH oxidase subunits (p47phox, p67phox and rac-1) from hippocampal cytosol to membrane fractions. Hippocampal membrane fractions from kainate-injected rats showed increased NADPH-driven and diphenylene iodonium-sensitive O2*- production in comparison to vehicle-treated rats. The time-course of kainate-induced NADPH oxidase activation coincided with microglial activation in the rat hippocampus. Finally, kainate-induced neuronal damage and membrane oxygen consumption were inhibited in mice overexpressing extracellular superoxide dismutase. These results suggest that seizure activity activates the membrane NADPH oxidase complex resulting in increased formation of O2*-.  相似文献   

11.
Activation of the superoxide-producing phagocyte NADPH oxidase requires interaction between p47(phox) and p22(phox), which is mediated via the SH3 domains of the former protein. This interaction is considered to be induced by exposure of the domains that are normally masked by an intramolecular interaction with the C-terminal region of p47(phox). Here we locate the intramolecular SH3-binding site at the region of amino acid residues 286-340, where Ser-303, Ser-304, and Ser-328 that are among several serines known to become phosphorylated upon cell stimulation exist. Simultaneous replacement of the three serines in p47(phox) with aspartates or glutamates, each mimicking phosphorylated residues, is sufficient for disruption of the intramolecular interaction and resultant access to p22(phox). The triply mutated proteins are also capable of activating the NADPH oxidase without in vitro activators such as arachidonate under cell-free conditions. In a whole-cell system where expression of the wild-type p47(phox) reconstitutes the stimulus-dependent oxidase activity, substitution of the kinase-insensitive residue alanine for Ser-328 as well as for Ser-303/Ser-304 leads to a defective production of superoxide. These findings suggest that phosphorylation of the three serines in p47(phox) induces a conformational change to a state accessible to p22(phox), thereby activating the NADPH oxidase.  相似文献   

12.
Reactive oxygen species (ROS) generated by the NADPH oxidases are conventionally thought to be cytotoxic and mutagenic and at high levels induce an oxidative stress response. The phagocyte NADPH oxidase catalyzes the NADPH-dependent reduction of molecular oxygen to generate superoxide O2-., which can dismute to generate ROS species. Together, these ROS participate in host defence by killing or damaging invading microbes. Flavocytochrome b558 is the catalytic core of the phagocyte NADPH oxidase and consists of a large glycoprotein gp91phox or Nox-2 and a small protein p22phox. The other components of the NADPH oxidase are cytosolic proteins, namely p67phox, p47phox, p40phox and Rac. A defect in any of the genes encoding gp91phox, p22phox, p67phox or p47phox results in chronic granulomatous disease, a genetic disorder characterized by severe and recurrent infections. Evidence is rapidly accumulating that low level of ROS were produced by NADPH oxidase homologs in non-phagocytic cells. To date, six human homologs (Nox-1, Nox-3, Nox-4, Nox-5, Duox-1 and Duox-2) have been recently identified in a variety of non-phagocytic cells. The identification of Nox-1 was quickly followed by the cloning of Nox-3, Nox-4, and Nox-5. In parallel, two very large members of the Nox family were discovered, namely Duox-1 and Duox-2, initially also referred to as thyroid oxidases. The physiological functions of Nox-dependent ROS generation are in progress and still require detailed characterization. Activation mechanisms and tissue distribution of the different members of the Nox family are very different, suggesting distinct physiological functions. Nox family enzymes are likely to be involved in a variety of physiological events including cell proliferation, host defence, differentiation, apoptosis, senescence and activation of growth-related signaling pathways. An increase and a decrease in the function of Nox enzymes can contribute to a wide range of pathological processes.  相似文献   

13.
Endothelial cells express a constitutively active phagocyte-type NADPH oxidase whose activity is augmented by agonists such as angiotensin II. We recently reported (Li, J.-M., and Shah, A. M. (2002) J. Biol. Chem. 277, 19952-19960) that in contrast to neutrophils a substantial proportion of the NADPH oxidase in unstimulated endothelial cells exists as preassembled intracellular complexes. Here, we investigate the mechanism of angiotensin II-induced endothelial NADPH oxidase activation. Angiotensin II (100 nmol/liter)-induced reactive oxygen species production (as measured by dichlorohydrofluorescein fluorescence or lucigenin chemiluminescence) was completely absent in coronary microvascular endothelial cells isolated from p47(phox) knockout mice. Transfection of p47(phox) cDNA into p47(phox-/-) cells restored the angiotensin II response, whereas transfection of antisense p47(phox) cDNA into wild-type cells depleted p47(phox) and inhibited the angiotensin II response. In unstimulated human microvascular endothelial cells, there was significant p47(phox)-p22(phox) complex formation but minimal detectable p47(phox) phosphorylation. Angiotensin II induced rapid serine phosphorylation of p47(phox) (within 1 min, peaking at approximately 15 min), a 1.9 +/- 0.1-fold increase in p47(phox)-p22(phox) complex formation and a 1.6 +/- 0.2-fold increase in NADPH-dependent O(2)-* production (p < 0.05). p47(phox) was redistributed to "nuclear" and membrane-enriched cell fractions. These data indicate that angiotensin II-stimulated endothelial NADPH oxidase activity is regulated through serine phosphorylation of p47(phox) and its enhanced binding to p22(phox).  相似文献   

14.
Transient expression of constitutively active Rac1 derivatives, (G12V) or (Q61L), was sufficient to induce phagocyte NADPH oxidase activity in a COS-7 cell model in which human cDNAs for essential oxidase components, gp91(phox), p22(phox), p47(phox), and p67(phox), were expressed as stable transgenes. Expression of constitutively active Rac1 in "COS(phox)" cells induced translocation of p47(phox) and p67(phox) to the membrane. Furthermore, translocation of p47(phox) was induced in the absence of p67(phox) expression, even though Rac does not directly bind p47(phox). Rac effector domain point substitutions (A27K, G30S, D38A, Y40C), which can selectively eliminate interaction with different effector proteins, impaired Rac1V12-induced superoxide production. Activation of endogenous Rac1 by expression of constitutively active Rac-guanine nucleotide exchange factor (GEF) derivatives was sufficient to induce high level NADPH oxidase activity in COS(phox) cells. The constitutively active form of the hematopoietic-specific GEF, Vav1, was the most effective at activating superoxide production, despite detection of higher levels of Rac1-GTP upon expression of constitutively active Vav2 or Tiam1 derivatives. These data suggest that Rac can play a dual role in NADPH oxidase activation, both by directly participating in the oxidase complex and by activating signaling events leading to oxidase assembly, and that Vav1 may be the physiologically relevant GEF responsible for activating this Rac-regulated complex.  相似文献   

15.
Hyperhomocysteinaemia is an independent risk factor for cardiovascular diseases due to atherosclerosis. The development of atherosclerosis involves reactive oxygen species-induced oxidative stress in vascular cells. Our previous study [Wang and O (2001) Biochem. J. 357, 233-240] demonstrated that Hcy (homocysteine) treatment caused a significant elevation of intracellular superoxide anion, leading to increased expression of chemokine receptor in monocytes. NADPH oxidase is primarily responsible for superoxide anion production in monocytes. In the present study, we investigated the molecular mechanism of Hcy-induced superoxide anion production in monocytes. Hcy treatment (20-100 microM) caused an activation of NADPH oxidase and an increase in the superoxide anion level in monocytes (THP-1, a human monocytic cell line). Transfection of cells with p47phox siRNA (small interfering RNA) abolished Hcy-induced superoxide anion production, indicating the involvement of NADPH oxidase. Hcy treatment resulted in phosphorylation and subsequently membrane translocation of p47phox and p67phox subunits leading to NADPH oxidase activation. Pretreatment of cells with PKC (protein kinase C) inhibitors Ro-32-0432 (bisindolylmaleimide XI hydrochloride) (selective for PKCalpha, PKCbeta and PKCgamma) abolished Hcy-induced phosphorylation of p47phox and p67phox subunits in monocytes. Transfection of cells with antisense PKCbeta oligonucleotide, but not antisense PKCalpha oligonucleotide, completely blocked Hcy-induced phosphorylation of p47phox and p67phox subunits as well as superoxide anion production. Pretreatment of cells with LY333531, a PKCbeta inhibitor, abolished Hcy-induced superoxide anion production. Taken together, these results indicate that Hcy-stimulated superoxide anion production in monocytes is regulated through PKC-dependent phosphorylation of p47phox and p67phox subunits of NADPH oxidase. Increased superoxide anion production via NADPH oxidase may play an important role in Hcy-induced inflammatory response during atherogenesis.  相似文献   

16.
Activation of the superoxide-producing phagocyte NADPH oxidase, crucial for host defence, requires an SH3 (Src homology 3)-domain-mediated interaction of the regulatory protein p47phox with p22phox, a subunit of the oxidase catalytic core flavocytochrome b558. Although previous analysis of a crystal structure has demonstrated that the tandem SH3 domains of p47phox sandwich a short PRR (proline-rich region) of p22phox (amino acids 151-160), containing a polyproline II helix, it has remained unknown whether this model is indeed functional in activation of the oxidase. In the present paper we show that the co-operativity between the two SH3 domains of p47phox, as expected from the model, is required for oxidase activation. Deletion of the linker between the p47phox SH3 domains results not only in a defective binding to p22phox but also in a loss of the activity to support superoxide production. The present analysis using alanine-scanning mutagenesis identifies Pro152, Pro156 and Arg158 in the p22phox PRR as residues indispensable for the interaction with p47phox. Pro152 and Pro156 are recognized by the N-terminal SH3 domain, whereas Arg158 contacts with the C-terminal SH3 domain. Amino acid substitution for any of the three residues in the p22phox PRR abrogates the superoxide-producing activity of the oxidase reconstituted in intact cells. The bis-SH3-mediated interaction of p47phox with p22phox thus functions to activate the phagocyte oxidase. Furthermore, we provide evidence that a region C-terminal to the PRR of p22phox (amino acids 161-164), adopting an a-helical conformation, participates in full activation of the phagocyte oxidase by fortifying the association with the p47phox SH3 domains.  相似文献   

17.
The heterodimeric flavocytochrome b558, comprised of the two integral membrane proteins p22phox and gp91phox, mediates the transfer of electrons from NADPH to molecular oxygen in the phagocyte NADPH oxidase to generate the superoxide precursor of microbicidal oxidants. This study uses deletion mutagenesis to identify regions of p22phox required for maturation of gp91phox and for NADPH oxidase activity. N-terminal, C-terminal, or internal deletions of human p22phox were generated and expressed in Chinese hamster ovary cells with transgenes for gp91phox and two other NADPH oxidase subunits, p47phox, and p67phox. The results demonstrate that p22phox-dependent maturation of gp91phox carbohydrate, cell surface expression of gp91phox, and the enzymatic function of flavocytochrome b558 are closely correlated. Whereas the 5 N-terminal and 25 C-terminal amino acids are dispensable for these functions, the N-terminal 11 amino acids of p22phox are required, as is a hydrophilic region between amino acids 65 and 90. Upon deletion of 54 residues at the C terminus of p22phox (amino acids 142-195), maturation and cell surface expression of gp91phox was still preserved, although NADPH oxidase activity was absent, as expected, due to removal of a proline-rich domain between amino acids 151-160 that is required for recruitment of p47phox. Antibody binding studies indicate that the extreme N terminus of p22phox is inaccessible in the absence of cell permeabilization, supporting a model in which both the N- and C-terminal domains of p22phox extend into the cytoplasm, anchored by two membrane-embedded regions.  相似文献   

18.
The NADPH oxidase system plays a central role in the antimicrobial activity of phagocytes. This system is initiated by the translocation of cytosolic proteins p67phox, p47phox and p40phox to be in close contact with membrane flavocytochrome b558. This event begins the electron transfer from cytosolic NADPH to molecular oxygen to produce superoxide anions. Herein, a functional analysis is presented of p67phox polymorphisms identified from healthy humans. Mutations were generated in the p67phox cDNA by site-directed mutagenesis and then transiently expressed in COS7 cells that also expressed gp91phox, p22phox, and p47phox from stable transgenes. The changes Va1166lle, Pro329Ser and His389Gln correspond to possible polymorphisms identified in healthy individuals revealed a functional activity similar to COSphox cells transiently transfected with WT p67phox; therefore, these modifications are not associated with genetic deficiencies in NADPH oxidase. In conclusion, the COSphox system represents an easily transfectable model for analysis of NADPH oxidase function in intact cells. The analysis of mutant derivatives of p67phox provides insight into molecular mechanisms by which this subunit regulates the NADPH oxidase.  相似文献   

19.
Glycated albumin, an early-glycation Amadori-modified protein, stimulates transforming growth factor-β (TGF-β) expression and increases the production of the extracellular matrix proteins in mesangial cells, contributing to the pathogenesis of diabetic nephropathy. Glycated albumin has been shown to increase NADPH oxidase-dependent superoxide formation in mesangial cells. However, the mechanisms are not well understood. Therefore, in the present studies, we determined the mechanisms by which glycated albumin activates NADPH oxidase in primary rat mesangial cells and its contribution to glycated albumin-induced TGF-β expression and extracellular matrix protein production. Our data showed that glycated albumin treatment stimulated NADPH oxidase activity and increased the formation of superoxide formation in rat mesangial cells. Moreover, glycated albumin treatment stimulated the expression and phosphorylation of p47phox, one of the cytosolic regulatory subunits of the NADPH oxidase. However, the levels of other NADPH oxidase subunits including Nox1, Nox2, Nox4, p22phox, and p67phox were not altered by glycated albumin. Moreover, siRNA-mediated knockdown of p47phox inhibited glycated albumin-induced NADPH oxidase activity and superoxide formation. Glycated albumin-induced TGF-β expression and extracellular matrix production (fibronectin) was also inhibited by p47phox knock down. Taken together, these data suggest that up-regulation of p47phox is involved in glycated albumin-mediated activation of NADPH oxidase, leading to glycated albumin-induced expression of TGF-β and extracellular matrix proteins in mesangial cells and contributing to the development of diabetic nephropathy.  相似文献   

20.
The phagocyte NADPH oxidase consists of multiple protein subunits that interact with each other to form a functional superoxide-generating complex. Although the essential components for superoxide production have been well characterized, other proteins potentially involved in the regulation of NADPH oxidase activation remain to be identified. We report here that the Galphai subunit of heterotrimeric G proteins is a novel binding partner for p67phox in transfected HEK293T cells and peripheral blood polymorphonuclear leukocytes. p67phox preferably interacted with inactive Galphai. Expression of p67phox caused a dose-dependent decrease in intracellular cyclic AMP concentration, suggesting altered function of Galphai. We identified a fragment of p67phox, consisting of the PB1 domain and the C-terminal SH3 domain, to be critical for the interaction with Galphai. Because these domains are involved in the interaction with p47phox and p40phox, the relationship between the respective binding events was investigated. Wild-type Galphai, but not its QL mutant, could promote the interaction between p67phox and p47phox. However, the interaction between p67phox and p40phox was not affected by either Galphai form. These results provide the first evidence for an interaction between p67phox and an alpha subunit of heterotrimeric G proteins, suggesting a potential role for Galphai in the regulation or activation of NADPH oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号