首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Melanin-concentrating hormone (MCH) is a cyclic amino acid neuropeptide localized in the lateral hypothalamus. Although MCH is thought to be an important regulator of feeding behavior, the involvement of this peptide in body weight control has been unclear. To examine the role of MCH in the development of obesity, we assessed the effect of chronic intracerebroventricular infusion of MCH in C57BL/6J mice that were fed with regular or moderately high-fat (MHF) diets. Intracerebroventricular infusion of MCH (10 microg/day for 14 days) caused a slight but significant increase in body weight in mice maintained on the regular diet. In the MHF diet-fed mice, MCH more clearly increased the body weight accompanied by a sustained hyperphagia and significant increase in fat and liver weights. Plasma glucose, insulin, and leptin levels were also increased in the MCH-treated mice fed the MHF diet. These results suggest that chronic stimulation of the brain MCH system causes obesity in mice and imply that MCH may have a major role in energy homeostasis.  相似文献   

5.
6.
Human pulmonary arterial smooth muscle cells (PASMC) were isolated from elastic pulmonary arteries dissected from lungs of individuals with and without pulmonary arterial hypertension (PAH). Reflecting increased smooth muscle constriction in cells from PAH subject, Ca2+ influx in response to endothelin‐1 (ET‐1) increased in all the PAH PASMC populations relative to the normal donor control cells. The ETA receptor mRNA levels remained unchanged, whereas the ETB receptor mRNA levels decreased in both heritable and idiopathic PAH‐derived PASMC. All the PASMC populations expressed considerably higher ETA compared to ETB receptor number. Both ETA and ETB receptor numbers were reduced in bone morphogenetic protein receptor type II (BMPR2) mutation PAH. ETB receptors showed a particular reduction in number. Phospho‐antibody array analysis of normal and BMPR2 deletion PASMC illustrated ERK and Akt activation to be the most prominent and to be taking place principally through ETB receptors in normal PASMC, but primarily through ETA receptors in PASMC from BMPR2 PAH subjects. Additionally in the PAH cells the total relative ET‐1 signal response was markedly reduced. Western analysis from the BMPR2 PASMC duplicated the array results, whereas PASMC from iPAH subjects showed variability with most samples continuing to signal through ETB. In sum, these results indicate that generally both receptors are reduced in PAH particularly ETB, and that ETB signaling through protein kinases becomes markedly reduced in BMPR2 PASMC, while it continues in IPAH. Importantly, the data suggest that caution must be taken when applying ET‐1 receptor antagonist therapy to PAH patients. J. Cell. Physiol. 228: 322–329, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
It has been shown that the oxidized low density lipoprotein receptor 1 (OLR1) gene plays an important role in the degradation of oxidized low density lipoprotein. Previous studies found a SNP in the 3′‐untranslated region (3′‐UTR) of the OLR1 gene associated with milk production traits in different dairy cattle populations and with loin eye area and marbling depth in beef cattle. MicroRNAs can regulate gene expression by binding the 3′‐UTR of target genes to degrade or to repress the translation of target genes. Bioinformatics have shown that there is a binding site of bta‐miR‐370 in the 3′‐UTR of the OLR1 gene, and a previous luciferase reporter assay system showed that the A/C mutation occurring in the 3′‐UTR of this gene caused the binding sites of bta‐miR‐370 to disappear in HEK293 cells. To further validate whether OLR1 was the target gene of bta‐miR‐370, the over‐expression and interference expression of bta‐miR‐370 were determined by transfecting bta‐miR‐370 mimics and inhibitor supplementations into bovine adipocyte. The qRT‐PCR result showed that the relative expression of OLR1 gene significantly decreased in the mimics group compared to the control, whereas the expression level in inhibitor group was higher than its control group. The above results were further verified by a Western blot at the protein level. In addition, lipid formation analysis of bovine adipocytes was performed via oil red O staining, and we found that cytoplasm lipid droplets in the inhibitor group showed a tendency to increase compared to the control group, whereas in the mimics group, we observed an obvious decrease of cytoplasm lipid droplets compared to the control and inhibitor groups. Taken together, our data here suggest that bta‐miR‐370 has a negative regulation role for OLR1 both at the gene expression and protein levels and bovine adipocytes cytoplasm lipid droplets formation, which provides a reference for illustrating how the OLR1 gene affects milk production and beef quality traits in cattle.  相似文献   

8.
We tested the hypothesis that the actions of Angiotensin (Ang)-(1-7) in the heart could involve changes in tissue levels of Ang II. This possibility was addressed by determining the effect of chronic infusion of Ang-(1-7) on plasma and tissue angiotensins. Ang-(1-7) was infused subcutaneously (osmotic minipumps) in Wistar rats. Angiotensins were determined by radioimmunoassay (RIA) in plasma, heart, and kidney. Tissue and plasma angiotensin-converting enzyme (ACE) activity and plasma renin activity (PRA) were also measured. Cardiac and renal ACE2 mRNA levels and cardiac angiotensinogen mRNA levels were assessed by semi-quantitative polymerase chain reaction (PCR). AT1 receptor number was evaluated by autoradiograph. Chronic infusion of Ang-(1-7) (2 microg/h, 6 days) produced a marked decrease of Ang II levels in the heart. A less pronounced but significant decrease of Ang-(1-7) was also observed. No significant changes were observed for Ang I. Ang II was not altered in the kidney. In this tissue, a significant increase of Ang-(1-7) and Ang I concentration was observed. A significant increase of plasma Ang-(1-7) and Ang II was also observed. Ang-(1-7) infusion did not change ACE activity or PRA. A selective slight significant increase in ACE2 expression in the heart was observed. Heart angiotensinogen mRNA as well as the number of Ang II binding sites did not change. These results suggest that AT1 receptors-independent changes in heart Ang II concentration might contribute for the beneficial effects of Ang-(1-7) in the heart. Moreover, these results reinforce the hypothesis that this angiotensin plays an important site-specific role within the renin-angiotensin system.  相似文献   

9.
10.
Nonadrenaline was infused intravenously for 5 days into conscious, unrestrained normotensive rats. Infusion of 40 μg per kg body weight per hour caused a chronic elevation of blood pressure, reaching a maximum increase of 28 ± 5 mm Hg on the fifth day. This hypertension is characterized by a labile blood pressure: periods of normotension are followed by rapid outbursts of hypertension. Resting plasma levels of noradrenaline ranged from 0.20–1.25 ng/ml. Infusion of 40 μg per kg body weight per hour caused a 4–5 fold increase. These observations suggest that chronic elevations of plasma noradrenaline are associated with labile hypertension.  相似文献   

11.
Adolescents are at greatest risk for traumatic brain injury (TBI) and repeat TBI (RTBI). TBI‐induced hypopituitarism has been documented in both adults and juveniles and despite the necessity of pituitary function for normal physical and brain development, it is still unrecognized and untreated in adolescents following TBI. TBI induced hormonal dysfunction during a critical developmental window has the potential to cause long‐term cognitive and behavioral deficits and the topic currently remains unaddressed. The purpose of this study was to determine if four mild TBIs delivered to adolescent male rats disrupts testosterone production and adult behavioral outcomes. Plasma testosterone was quantified from 72 hrs preinjury to 3 months postinjury and pubertal onset, reproductive organ growth, erectile function and reproductive behaviors were assessed at 1 and 2 months postinjury. RTBI resulted in both acute and chronic decreases in testosterone production and delayed onset of puberty. Significant deficits were observed in reproductive organ growth, erectile function and reproductive behaviors in adult rats at both 1 and 2 months postinjury. These data suggest adolescent RTBI‐induced hypopituitarism underlies abnormal behavioral changes observed during adulthood. The impact of undiagnosed hypopituitarism following RTBI in adolescence has significance not only for growth and puberty, but also for brain development and neurobehavioral function as adults. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 193–202, 2015  相似文献   

12.
Mutation of Tar DNA‐binding protein 43 (TDP‐43) is linked to amyotrophic lateral sclerosis. Although astrocytes have important roles in neuron function and survival, their potential contribution to TDP‐43 pathogenesis is unclear. Here, we created novel lines of transgenic rats that express a mutant form of human TDP‐43 (M337V substitution) restricted to astrocytes. Selective expression of mutant TDP‐43 in astrocytes caused a progressive loss of motor neurons and the denervation atrophy of skeletal muscles, resulting in progressive paralysis. The spinal cord of transgenic rats also exhibited a progressive depletion of the astroglial glutamate transporters GLT‐1 and GLAST. Astrocytic expression of mutant TDP‐43 led to activation of astrocytes and microglia, with an induction of the neurotoxic factor Lcn2 in reactive astrocytes that was independent of TDP‐43 expression. These results indicate that mutant TDP‐43 in astrocytes is sufficient to cause non‐cell‐autonomous death of motor neurons. This motor neuron death likely involves deficiency in neuroprotective genes and induction of neurotoxic genes in astrocytes.  相似文献   

13.
14.
Objective: Subcellular localization has been shown to play an important role in determining activity and accumulation of p27 protein during cell cycle progression. The purpose of this study was to examine p27 localization and ubiquitylation in relation to E3 ligase expression during adipocyte hyperplasia. Research Methods and Procedures: This study used the murine 3T3‐L1 preadipocyte model to examine p27 regulation during synchronous cell cycle progression. Cell lysates were isolated over time after hormonal stimulation, fractionated to cytosolic and nuclear compartments, and immunoblotted for relative protein determinations. Results: Data presented in this study show that p27 was present in the cytosol and nucleus in density‐arrested preadipocytes and that abundance in both compartments decreased in a phase‐specific manner as preadipocytes synchronously re‐entered the cell cycle during early phases of adipocyte differentiation. Blocking CRM1‐mediated nuclear export did not prevent degradation, nor did it cause nuclear accumulation of p27, suggesting that distinct mechanisms mediating cytosolic and nuclear p27 degradation were involved. Treating preadipocytes with a potent and specific proteasome inhibitor during hormonal stimulation prevented Skp2 accumulation and p27187 phosphorylation, which are essential events for SCFSkp2 E3 ligase activity and nuclear p27 ubiquitylation during S/G2 phase progression. Proteasome blockade also resulted in the first evidence of cytosolic p27 ubiquitylation during late G1 phase as preadipocytes undergo the transition from quiescence to proliferation. Discussion: These data are consistent with the postulate that p27 is ubiquitylated and targeted for degradation by the 26S proteasome in a phase‐specific manner by distinct ubiquitin E3 ligases localized to the cytosol and nucleus during adipocyte hyperplasia.  相似文献   

15.
BackgroundAlthough insulin resistance (IR) is a key factor in the pathogenesis of type 2 diabetes (T2D), the precise role of insulin in the development of IR remains unclear. Therefore, we investigated whether chronic basal insulin infusion is causative in the development of glucose intolerance.MethodsNormoglycemic lean rats surgically instrumented with i.v. catheters were infused with insulin (3 mU/kg/min) or physiological saline for 6 weeks. At infusion-end, plasma insulin levels along with glucose tolerance were assessed.ResultsSix weeks of insulin infusion induced glucose intolerance and impaired insulin response in healthy rats. Interestingly, the effects of chronic insulin infusion were completely normalized following 24 h withdrawal of exogenous insulin and plasma insulin response to glucose challenge was enhanced, suggesting improved insulin secretory capacity. As a result of this finding, we assessed whether the effects of insulin therapy followed by a washout could ameliorate established glucose intolerance in obese rats. Obese rats were similarly instrumented and infused with insulin or physiological saline for 7 days followed by 24 h washout. Seven day-insulin therapy in obese rats significantly improved glucose tolerance, which was attributed to improved insulin secretory capacity and improved insulin signaling in liver and skeletal muscle.ConclusionModerate infusion of insulin alone is sufficient to cause glucose intolerance and impair endogenous insulin secretory capacity, whereas short-term, intensive insulin therapy followed by insulin removal effectively improves glucose tolerance, insulin response and peripheral insulin sensitivity in obese rats.General significanceNew insight into the link between insulin and glucose intolerance may optimize T2D management.  相似文献   

16.
We previously showed that chronic insulin infusion induces insulin resistance, hyperendothelinemia, and hypertension in rats (C. C. Juan, V. S. Fang, C. F. Kwok, J. C. Perng, Y. C. Chou, and L. T. Ho. Metabolism 48: 465-471, 1999). Endothelin-1 (ET-1), a potent vasoconstrictor, is suggested to play an important role in maintaining vascular tone and regulating blood pressure, and insulin increases ET-1 production in vivo and in vitro. In the present study, BQ-610, a selective endothelin A receptor antagonist, was used to examine the role of ET-1 in insulin-induced hypertension in rats. BQ-610 (0.7 mg/ml; 0.5 ml/kg body wt) or normal saline was given intraperitoneally two times daily for 25 days to groups of rats infused with either saline or insulin (2 U/day via sc-implanted osmotic pumps), and changes in plasma levels of insulin, glucose, and ET-1 and the systolic blood pressure were measured over the experimental period, whereas changes in insulin sensitivity were examined at the end of the experimental period. Plasma insulin and ET-1 levels were measured by RIA, plasma glucose levels using a glucose analyzer, systolic blood pressure by the tail-cuff method, and insulin sensitivity by an oral glucose tolerance test. Our studies showed that insulin infusion caused sustained hyperinsulinemia in both saline- and BQ-610-injected rats over the infusion period. After pump implantation (2 wk), the systolic blood pressure was significantly higher in insulin-infused rats than in saline-infused rats in the saline-injected group (133 +/- 3.1 vs. 113 +/- 1.1 mmHg, P < 0.05) but not in the BQ-610-injected group (117 +/- 1.2 vs. 117 +/- 1.8 mmHg). Plasma ET-1 levels in both sets of insulin-infused rats were higher than in saline-infused controls (2.5 +/- 0.6 and 2.5 +/- 0.8 vs. 1.8 +/- 0.4 and 1.7 +/- 0.3 pmol/l, P < 0.05). Oral glucose tolerance tests showed that BQ-610 treatment did not prevent the insulin resistance caused by chronic insulin infusion. No significant changes were found in insulin sensitivity and blood pressure in saline-infused rats treated with BQ-610. In a separate experiment, insulin infusion induced the increase in arterial ET-1 content, hypertension, and subsequent plasma ET-1 elevation in rats. These results suggest that, in the insulin infusion rat model, ET-1 plays a mediating role in the development of hypertension, but not of insulin resistance.  相似文献   

17.
Increase in 4‐hydroxy‐2‐nonenal (4HNE) due to oxidative stress has been observed in a variety of cardiac diseases such as diabetic cardiomyopathy. 4HNE exerts a damaging effect in the myocardium by interfering with subcellular organelles like mitochondria by forming adducts. Therefore, we hypothesized that increased 4HNE adduct formation in the heart results in proteasome inactivation in isoproterenol (ISO)‐infused type 1 diabetes mellitus (DM) rats. Eight‐week‐old male Sprague Dawley rats were injected with streptozotocin (STZ, 65 mg kg?1). The rats were infused with ISO (5 mg kg?1) for 2 weeks by mini pumps, after 8 weeks of STZ injection. We studied normal control (n = 8) and DM + ISO (n = 10) groups. Cardiac performance was assessed by echocardiography and Millar catheter at the end of the protocol at 20 weeks. Initially, we found an increase in 4HNE adducts in the hearts of the DM + ISO group. There was also a decrease in myocardial proteasomal peptidase (chymotrypsin and trypsin‐like) activity. Increases in cardiomyocyte area (446 ± 32·7 vs 221 ± 10·83) (µm2), per cent area of cardiac fibrosis (7·4 ± 0·7 vs 2·7 ± 0·5) and cardiac dysfunction were also found in DM + ISO (P < 0·05) relative to controls. We also found increased 4HNE adduct formation on proteasomal subunits. Furthermore, reduced aldehyde dehydrogenase 2 activity was observed in the myocardium of the DM + ISO group. Treatment with 4HNE (100 μM) for 4 h on cultured H9c2 cardiomyocytes attenuated proteasome activity. Therefore, we conclude that the 4HNE‐induced decrease in proteasome activity may be involved in the cardiac pathology in STZ‐injected rats infused with ISO. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The kisspeptins are KiSS-1 gene-derived peptides that signal through the G protein-coupled receptor-54 (GPR54) and have recently been shown to be critical regulators of reproduction. Acute intracerebroventricular or peripheral administration of kisspeptin stimulates the hypothalamic-pituitary-gonadal (HPG) axis. This effect is thought to be mediated via the hypothalamic gonadotropin-releasing hormone (GnRH) system. Chronic administration of GnRH agonists paradoxically suppresses the HPG axis after an initial agonistic stimulation. We investigated the effects of continuous peripheral kisspeptin administration in male rats by use of Alzet minipumps. Initially we compared the effects of acute subcutaneous administration of kisspeptin-10, -14, and -54 on the HPG axis. Kisspeptin-54 produced the greatest increase in plasma LH and total testosterone at 60 min postinjection and was used in the subsequent continuous administration experiments. Chronic subcutaneous long-term administration of 50 nmol kisspeptin-54/day for 13 days decreased testicular weight. Histological examination showed degeneration of the seminiferous tubules associated with a significant decrease in the circulating levels of the testes-derived hormone, inhibin B. Plasma free and total testosterone were also lower, although these changes did not reach statistical significance. Further studies examined the effects of shorter periods of continuous kisspeptin administration. Subcutaneous administration of 50 nmol kisspeptin-54 for 1 day increased plasma LH and testosterone. This effect was lost after 2 days of administration, suggesting a downregulation of the HPG axis response to kisspeptin following continuous administration. These findings indicate that kisspeptin may provide a novel tool for the manipulation of the HPG axis and spermatogenesis.  相似文献   

19.
Estrogen receptor content and dynamics in the uteri obtained from chronically estrogenized rats were analyzed. 12 day treatment with a subcutaneous implantation of a diethylstilbestrol pellet resulted in maximal stimulation of uteri with regard to wet tissue weight, DNA content, as well as progesterone receptor content without significant alteration of the estrogen receptor level. Estrogen receptor dynamics in just ovariectomized or ovariectomized and diethylstilbestrol-stimulated rats elicited by a single injection of estradiol were next examined using the exchange methods. The cytosol receptor content rapidly declined, with a small and temporary accumulation of the nuclear receptor in the uterus from rats continuously exposed to diethylstilbestrol during the preceding 12 days. A relatively rapid cytosol receptor replenishment was also observed in rats pretreated with diethylstilbestrol. This was accompanied by a rapid decrease in the nuclear receptor level to 70% of the preinjection value at 5 h after estradiol administration. These data are in contrast to findings on uteri of ovariectomized and nonestrogen-treated rats, in which a single injection of estradiol resulted in a prolonged nuclear receptor retention and a delayed cytosol receptor replenishment. Adrenalectomy did not result in a significant change of receptor dynamic patterns, suggesting that adrenal steroids do not play a role in the alteration of receptor dynamics elicited by continuous stimulation with diethylstilbestrol. These observations suggest that a continuous exposure of rat uteri to the estrogen causes an altered regulation of estrogen receptor dynamics by the homologous steroid compared to those in chronically estrogen-deprived rats.  相似文献   

20.
In the present study, we hypothesized that endothelin (ET) receptors (ETA and ETB) stimulation, through increased calcium and ROS formation, leads to Nucleotide Oligomerization Domain‐Like Receptor Family, Pyrin Domain Containing 3 (NLRP3) activation. Intracavernosal pressure (ICP/MAP) was measured in C57BL/6 (WT) mice. Functional and immunoblotting assays were performed in corpora cavernosa (CC) strips from WT, NLRP3−/− and caspase−/− mice in the presence of ET‐1 (100 nM) and vehicle, MCC950, tiron, BAPTA AM, BQ123, or BQ788. ET‐1 reduced the ICP/MAP in WT mice, and MCC950 prevented the ET‐1 effect. ET‐1 decreased CC ACh‐, sodium nitroprusside (SNP)‐induced relaxation, and increased caspase‐1 expression. BQ123 an ETA receptor antagonist reversed the effect. The ETB receptor antagonist BQ788 also reversed ET‐1 inhibition of ACh and SNP relaxation. Additionally, tiron, BAPTA AM, and NLRP3 genetic deletion prevented the ET‐1‐induced loss of ACh and SNP relaxation. Moreover, BQ123 diminished CC caspase‐1 expression, while BQ788 increased caspase‐1 and IL‐1β levels in a concentration‐dependent manner (100 nM–10 μM). Furthermore, tiron and BAPTA AM prevented ET‐1‐induced increase in caspase‐1. In addition, BAPTA AM blocked ET‐1‐induced ROS generation. In conclusion, ET‐1‐induced erectile dysfunction depends on ETA‐ and ETB‐mediated activation of NLRP3 in mouse CC via Ca2+‐dependent ROS generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号