首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acquired radioresistance of cancer cells interferes with radiotherapy and increases the probability of cancer recurrence. HepG2‐8960‐R, which is one of several clinically relevant radioresistant (CRR) cell lines, has a high tolerance to the repeated clinically relevant doses of X‐ray radiation. In this study, HepG2‐8960‐R had slightly lower cell proliferation ability than HepG2 in the presence of FBS. In particular, epidermal growth factor (EGF) hardly enhanced cell proliferation and DNA synthesis in HepG2‐8960‐R. Additionally, EGF could not induce the activation of Erk1/2, because the expression of EGF receptor (EGFR) protein decreased in HepG2‐8960‐R in accordance with the methylation of the EGFR promoter region. Therefore, cetuximab did not inhibit HepG2‐8960‐R cell proliferation. Our study showed that HepG2‐8960‐R had radioresistant and cetuximab‐resistant abilities. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Optically active 3,3′‐dimethyl‐2,2′‐diamino‐1,1′‐binaphthyl (DM‐DABN) and 3,3′‐dimethyl‐2‐amino‐2′‐hydroxybinaphthyl (DM‐NOBIN) derivatives were synthesized by Cu‐(?)‐sparteine complex‐catalyzed enantioselective homo‐ and hetero‐coupling of 2‐naphthylamine, respectively. The difference in enantioselectivity was observed by changing the concentration of oxygen. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
4.
In this study, a newly isolated strain screened from the indoxacarb‐rich agricultural soils, Bacillus cereus WZZ006, has a high stereoselectivity to racemic substrate 5‐chloro‐1‐oxo‐2,3‐dihydro‐2‐hydroxy‐1H‐indene‐2‐carboxylic acid methyl ester. (S)‐5‐chloro‐1‐oxo‐2,3‐dihydro‐2‐hydroxy‐1H‐indene‐2‐carboxylic acid methyl ester was obtained by bio‐enzymatic resolution. After the 36‐hour hydrolysis in 50‐mM racemic substrate under the optimized reaction conditions, the e.e.s was up to 93.0% and the conversion was nearly 53.0% with the E being 35.0. Therefore, B cereus WZZ006 performed high‐level ability to produce (S)‐5‐chloro‐1‐oxo‐2,3‐dihydro‐2‐hydroxy‐1H‐indene‐2‐carboxylic acid methyl ester. This study demonstrates a new biocatalytic process route for preparing the indoxacarb chiral intermediates and provides a theoretical basis for the application of new insecticides in agricultural production.  相似文献   

5.
In preimplantation mouse embryos, the Hippo signaling pathway plays a central role in regulating the fates of the trophectoderm (TE) and the inner cell mass (ICM). In early blastocysts with more than 32 cells, the Par‐aPKC system controls polarization of the outer cells along the apicobasal axis, and cell polarity suppresses Hippo signaling. Inactivation of Hippo signaling promotes nuclear accumulation of a coactivator protein, Yap, leading to induction of TE‐specific genes. However, whether similar mechanisms operate at earlier stages is not known. Here, we show that slightly different mechanisms operate in 16‐cell stage embryos. Similar to 32‐cell stage embryos, disruption of the Par‐aPKC system activated Hippo signaling and suppressed nuclear Yap and Cdx2 expression in the outer cells. However, unlike 32‐cell stage embryos, 16‐cell stage embryos with a disrupted Par‐aPKC system maintained apical localization of phosphorylated Ezrin/Radixin/Moesin (p‐ERM), and the effects on Yap and Cdx2 were weak. Furthermore, normal 16‐cell stage embryos often contained apolar cells in the outer position. In these cells, the Hippo pathway was strongly activated and Yap was excluded from the nuclei, thus resembling inner cells. Dissociated blastomeres of 8‐cell stage embryos form polar–apolar couplets, which exhibit different levels of nuclear Yap, and the polar cell engulfed the apolar cell. These results suggest that cell polarization at the 16‐cell stage is regulated by both Par‐aPKC‐dependent and ‐independent mechanisms. Asymmetric cell division is involved in cell polarity control, and cell polarity regulates cell positioning and most likely controls Hippo signaling.  相似文献   

6.
Engin ahin 《Chirality》2019,31(10):892-897
Optically active aromatic alcohols are valuable chiral building blocks of many natural products and chiral drugs. Lactobacillus paracasei BD87E6, which was isolated from a cereal‐based fermented beverage, was shown as a biocatalyst for the bioreduction of 1‐(benzofuran‐2‐yl) ethanone to (S)‐1‐(benzofuran‐2‐yl) ethanol with highly stereoselectivity. The bioreduction conditions were optimized using L. paracasei BD87E6 to obtain high enantiomeric excess (ee) and conversion. After optimization of the bioreduction conditions, it was shown that the bioreduction of 1‐(benzofuran‐2‐yl)ethanone was performed in mild reaction conditions. The asymmetric bioreduction of the 1‐(benzofuran‐2‐yl)ethanone had reached 92% yield with ee of higher than 99.9% at 6.73 g of substrate. Our study gave the first example for enantiopure production of (S)‐1‐(benzofuran‐2‐yl)ethanol by a biological green method. This process is also scalable and has potential in application. In this study, a basic and novel whole‐cell mediated biocatalytic method was performed for the enantiopure production of (S)‐1‐(benzofuran‐2‐yl)ethanol in the aqueous medium, which empowered the synthesis of a precious chiral intermediary process to be converted into a sophisticated molecule for drug production.  相似文献   

7.
The long‐standing traditional method of delivering embryonic stem (ES) cells adjacent to the inner cell mass (ICM) of blastocysts to generate chimeras improved with the advent of laser‐ or Piezo assisted 8‐cell embryo microinjection. Building on this technology but omitting either the laser or the Piezo to penetrate the zona pellucida and making use of earlier embryonic stages (2‐cell and 4‐cell), we were able to significantly speed up and economize our ES cell microinjection and chimera production throughput. We demonstrate here that embryonic (ES) and induced pluripotent stem (iPS) cells can stay fully pluripotent when delivered into 2‐cell‐ and 4‐cell‐stage embryos, long before they would naturally be incorporated into the ICM of a blastocyst (E3.5) and give rise to high percentage and germline transmitting chimeras. genesis 48:394–399, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
The aim of this study was to evaluate the impact that 6‐O‐(3″, 4″‐di‐Otrans‐cinnamoyl)‐α‐ l ‐rhamnopyranosylcatalpol (Dicinn) and verbascoside (Verb), two compounds simultaneously reported in Verbascum ovalifolium, have on tumor cell viability, apoptosis, cell cycle kinetics, and intracellular reactive oxygen species (ROS) level. At 100 µg/mL and 48 hours incubation time, Dicinn and Verb produced good cytotoxic effects in A549, HT‐29, and MCF‐7 cells. Dicinn induced cell‐cycle arrest at the G0/G1 phase and apoptosis, whereas Verb increased the population of subG1 cells and cell apoptosis rates. Furthermore, the two compounds exhibited time‐dependent ROS generating effects in tumor cells (1‐24 hours). Importantly, no cytotoxic effects were induced in nontumor MCF‐10A cells by the two compounds up to 100 µg/mL. Overall, the effects exhibited by Verb in tumor cells were more potent, which can be correlated with its structural features, such as the presence of phenolic hydroxyl groups.  相似文献   

9.
10.
The immunological synapse generation and function is the result of a T‐cell polarization process that depends on the orchestrated action of the actin and microtubule cytoskeleton and of intracellular vesicle traffic. However, how these events are coordinated is ill defined. Since Rab and Rho families of GTPases control intracellular vesicle traffic and cytoskeleton reorganization, respectively, we investigated their possible interplay. We show here that a significant fraction of Rac1 is associated with Rab11‐positive recycling endosomes. Moreover, the Rab11 effector FIP3 controls Rac1 intracellular localization and Rac1 targeting to the immunological synapse. FIP3 regulates, in a Rac1‐dependent manner, key morphological events, like T‐cell spreading and synapse symmetry. Finally, Rab11‐/FIP3‐mediated regulation is necessary for T‐cell activation leading to cytokine production. Therefore, Rac1 endosomal traffic is key to regulate T‐cell activation.  相似文献   

11.
12.
Phagocytosis and autophagy are two distinct pathways that degrade external and internal unwanted particles. Both pathways lead to lysosomal degradation inside the cell, and over the last decade, the line between them has blurred; autophagy proteins were discovered on phagosomes engulfing foreign bacteria, leading to the proposal of LC3‐associated phagocytosis (LAP). Many proteins involved in macroautophagy are used for phagosome degradation, although Atg8/LC3 family proteins only decorate the outer membrane of LC3‐associated phagosomes, in contrast to both autophagosome membranes. A few proteins distinguish LAP from autophagy, such as components of the autophagy pre‐initiation complex. However, most LAP cargo is wrapped in multiple layers of membranes, making them similar in structure to autophagosomes. Recent evidence suggests that LC3 is important for the degradation of internal membranes, explaining why LC3 would be a vital part of both macroautophagy and LAP. In addition to removing invading pathogens, multicellular organisms also use LAP to degrade cell debris, including cell corpses and photoreceptor outer segments. The post‐mitotic midbody remnant is another cell fragment, which results from each cell division, that was recently added to the growing list of LAP cargoes. Thus, LAP plays an important role during the normal physiology and homoeostasis of animals.  相似文献   

13.
Screening of commercially available fluoro monosaccharides as putative growth inhibitors in Arabidopsis thaliana revealed that 2‐fluoro 2‐l ‐fucose (2F‐Fuc) reduces root growth at micromolar concentrations. The inability of 2F‐Fuc to affect an Atfkgp mutant that is defective in the fucose salvage pathway indicates that 2F‐Fuc must be converted to its cognate GDP nucleotide sugar in order to inhibit root growth. Chemical analysis of cell wall polysaccharides and glycoproteins demonstrated that fucosylation of xyloglucans and of N‐linked glycans is fully inhibited by 10 μm 2F‐Fuc in Arabidopsis seedling roots, but genetic evidence indicates that these alterations are not responsible for the inhibition of root development by 2F‐Fuc. Inhibition of fucosylation of cell wall polysaccharides also affected pectic rhamnogalacturonan‐II (RG‐II). At low concentrations, 2F‐Fuc induced a decrease in RG‐II dimerization. Both RG‐II dimerization and root growth were partially restored in 2F‐Fuc‐treated seedlings by addition of boric acid, suggesting that the growth phenotype caused by 2F‐Fuc was due to a deficiency of RG‐II dimerization. Closer investigation of the 2F‐Fuc‐induced growth phenotype demonstrated that cell division is not affected by 2F‐Fuc treatments. In contrast, the inhibitor suppressed elongation of root cells and promoted the emergence of adventitious roots. This study further emphasizes the importance of RG‐II in cell elongation and the utility of glycosyltransferase inhibitors as new tools for studying the functions of cell wall polysaccharides in plant development. Moreover, supplementation experiments with borate suggest that the function of boron in plants might not be restricted to RG‐II cross‐linking, but that it might also be a signal molecule in the cell wall integrity‐sensing mechanism.  相似文献   

14.
Site selective mono‐ and dimetalation methods have been developed for the functionalization of 1‐[(1,1′‐biphenyl)‐2‐yl]‐1H‐pyrrole. Optical resolution of the prepared 1‐[(3‐carboxy‐1,1′‐biphenyl)‐2‐yl]pyrrole‐2‐carboxylic acid provided new atropisomeric 1‐arylpyrrole derivatives. The absolute configuration of the pure dicarboxylic acid enantiomers was determined by single crystal X‐ray diffraction and CD spectroscopy. Chirality 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
We have previously demonstrated that in renal cortical collecting duct cells (RCCD1) the expression of the water channel Aquaporin 2 (AQP2) raises the rate of cell proliferation. In this study, we investigated the mechanisms involved in this process, focusing on the putative link between AQP2 expression, cell volume changes, and regulatory volume decrease activity (RVD). Two renal cell lines were used: WT‐RCCD1 (not expressing aquaporins) and AQP2‐RCCD1 (transfected with AQP2). Our results showed that when most RCCD1 cells are in the G1‐phase (unsynchronized), the blockage of barium‐sensitive K+ channels implicated in rapid RVD inhibits cell proliferation only in AQP2‐RCCD1 cells. Though cells in the S‐phase (synchronized) had a remarkable increase in size, this enhancement was higher and was accompanied by a significant down‐regulation in the rapid RVD response only in AQP2‐RCCD1 cells. This decrease in the RVD activity did not correlate with changes in AQP2 function or expression, demonstrating that AQP2—besides increasing water permeability—would play some other role. These observations together with evidence implying a cell‐sizing mechanism that shortens the cell cycle of large cells, let us to propose that during nutrient uptake, in early G1, volume tends to increase but it may be efficiently regulated by an AQP2‐dependent mechanism, inducing the rapid activation of RVD channels. This mechanism would be down‐regulated when volume needs to be increased in order to proceed into the S‐phase. Therefore, during cell cycle, a coordinated modulation of the RVD activity may contribute to accelerate proliferation of cells expressing AQP2. J. Cell. Biochem. 113: 3721–3729, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
The most life‐threatening aspect of cancer is metastasis; cancer patient mortality is mainly due to metastasis. Among all metastases, presence of brain metastasis is one with the poorest prognosis; the median survival time can be counted in months. Therefore, prevention or decreasing their incidence would be highly desired both by patients and physicians. Metastatic cells invading the brain must breach the cerebral vasculature, primarily the blood‐brain barrier. The key step in this process is the establishment of firm adhesion between the cancer cell and the cerebral endothelial layer. Using the atomic force microscope, a high‐resolution force spectrograph, our aim was to explore the connections among the cell morphology, cellular mechanics, and biological function in the process of transendothelial migration of metastatic cancer cells. By immobilization of a melanoma cell to an atomic force microscope's cantilever, intercellular adhesion was directly measured at quasi‐physiological conditions. Hereby, we present our latest results by using this melanoma‐decorated probe. Binding characteristics to a confluent layer of brain endothelial cells was directly measured by means of single‐cell force spectroscopy. Adhesion dynamics and strength were characterized, and we present data about spatial distribution of elasticity and detachment strength. These results highlight the importance of cellular mechanics in brain metastasis formation and emphasize the enormous potential toward exploration of intercellular dynamic‐related processes.  相似文献   

17.
Parkinson's disease is the second most common neurodegenerative disease and its pathogenesis is closely associated with oxidative stress. Deposition of aggregated α‐synuclein (α‐Syn) occurs in familial and sporadic forms of Parkinson's disease. Here, we studied the effect of oligomeric α‐Syn on one of the major markers of oxidative stress, lipid peroxidation, in primary co‐cultures of neurons and astrocytes. We found that oligomeric but not monomeric α‐Syn significantly increases the rate of production of reactive oxygen species, subsequently inducing lipid peroxidation in both neurons and astrocytes. Pre‐incubation of cells with isotope‐reinforced polyunsaturated fatty acids (D‐PUFAs) completely prevented the effect of oligomeric α‐Syn on lipid peroxidation. Inhibition of lipid peroxidation with D‐PUFAs further protected cells from cell death induced by oligomeric α‐Syn. Thus, lipid peroxidation induced by misfolding of α‐Syn may play an important role in the cellular mechanism of neuronal cell loss in Parkinson's disease.

  相似文献   


18.
A variety of applications of 8‐alkynylated nucleosides has prompted the synthesis of new purine analogues. Bromination of unprotected 2‐amino‐2′‐deoxyadenosine with Br2/AcOH/AcONa gives 2‐amino‐8‐bromo‐2′‐deoxyadenosine (87%). The brominated derivative is converted to 8‐alkynylated 2‐amino‐2′‐deoxyadenosines by palladium‐catalyzed Sonogashira cross‐coupling reaction via microwave assistance (81 – 95%). The resulting compounds are further transformed to 8‐alkynylated 2′‐deoxyisoguanosines (52 – 70%). The physical properties of new compounds are investigated.  相似文献   

19.
Microtubule‐associated protein Tau, abundant in the central nervous system (CNS), plays crucial roles in microtubule assembly and stabilization. Abnormal Tau phosphorylation and aggregation are a common pathogenic hallmark in Alzheimer's disease (AD). Hyperphosphorylation of Tau could change its conformation and result in self‐aggregation, increased oxidative stress, and neuronal death. In this study, we examined the potential of licochalcone A (a natural chalcone) and five synthetic derivatives (LM compounds) for inhibiting Tau misfolding, scavenging reactive oxygen species (ROS) and providing neuroprotection in human cells expressing proaggregant ΔK280 TauRD‐DsRed. All test compounds were soluble up to 100 μM in cell culture media and predicted to be orally bioavailable and CNS‐active. Among them, licochalcone A and LM‐031 markedly reduced Tau misfolding and associated ROS, promoted neurite outgrowth, and inhibited caspase 3 activity in ΔK280 TauRD‐DsRed 293 and SH‐SY5Y cells. Mechanistic studies showed that LM‐031 upregulates HSPB1 chaperone, NRF2/NQO1/GCLC pathway, and CREB‐dependent BDNF/AKT/ERK/BCL2 pathway in ΔK280 TauRD‐DsRed SH‐SY5Y cells. Decreased neurite outgrowth upon induction of ΔK280 TauRD‐DsRed was rescued by LM‐031, which was counteracted by knockdown of NRF2 or CREB. LM‐031 further rescued the downregulated NRF2 and pCREB, reduced Aβ and Tau levels in hippocampus and cortex, and ameliorated cognitive deficits in streptozocin‐induced hyperglycemic 3 × Tg‐AD mice. Our findings strongly indicate the potential of LM‐031 for modifying AD progression by targeting HSPB1 to reduce Tau misfolding and activating NRF2 and CREB pathways to suppress apoptosis and promote neuron survival, thereby offering a new drug development avenue for AD treatment.  相似文献   

20.
Diffusion into and from κ‐carrageenan gel beads was studied, both in the absence and presence of bacterial cells, both with and without biochemical reaction. The solutes were indole, L ‐serine, and L ‐tryptophan. The reaction was that of indole and L ‐serine to give L ‐tryptophan. Established theory concerning diffusion of a single solute in cell‐free gels was found to describe well the effect of the gel on diffusivity. Simultaneous diffusion of the three solutes resulted in lower diffusivities than those for individual solutes, suggesting the need to use multicomponent diffusion theory. The effect of cells on diffusion could only be accounted for by models assuming permeable cells. Diffusion with chemical reaction was reasonably well described by an effectiveness factor calculated using an effective diffusivity estimated from diffusion data without reaction. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 63: 625–631, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号