首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Amyloid precursor protein (APP) has been characterized as an adipocyte‐secreted protein that might contribute to obesity‐related insulin resistance, inflammation, and dementia. In the current study, regulation of APP by the proinflammatory and insulin resistance‐inducing cytokine tumor necrosis factor (TNF) α was determined in 3T3‐L1 adipocytes. Interestingly, APP protein synthesis and mRNA expression were significantly increased by TNFα in a time‐dependent manner with maximal induction observed after 24 h of treatment. Furthermore, TNFα induced APP mRNA expression dose‐dependently with maximal 6.4‐fold upregulation seen at 100 ng/ml effector. Moreover, inhibitor experiments suggested that TNFα‐induced APP expression was mediated by nuclear factor κ B. Taken together, we show for the first time a potent upregulation of APP by TNFα suggesting a potential role of this adipocyte‐secreted protein in TNFα‐induced insulin resistance and inflammatory disease. J. Cell. Biochem. 108: 1418–1422, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
6.
7.
Interleukin-15 (IL-15) is a cytokine which is highly expressed in skeletal muscle tissue, and which has anabolic effects on skeletal muscle protein dynamics both in vivo and in vitro. Additionally, administration of IL-15 to rats and mice inhibits white adipose tissue deposition. To determine if the action of IL-15 on adipose tissue is direct, the capacity of cultured murine 3T3-L1 preadipocytes and adipocytes to respond to IL-15 was examined. IL-15 administration inhibited lipid accumulation in differentiating 3T3-L1 preadipocytes, and stimulated secretion of the adipocyte-specific hormone adiponectin by differentiated 3T3-L1 adipocytes. The latter observation constitutes the first report of a cytokine or growth factor which stimulates adiponectin production. IL-15 mRNA expression by cultured 3T3-L1 adipogenic cells and C2C12 murine skeletal myogenic cells was also examined. Quantitative real-time PCR indicated IL-15 mRNA was expressed by C2C12 skeletal myogenic cells, and was upregulated more than 10-fold in differentiated skeletal myotubes compared to undifferentiated myoblasts. In contrast, 3T3-L1 cells expressed little or no IL-15 mRNA at either the undifferentiated preadipocyte or differentiated adipocyte stages. These findings provide support for the hypothesis that IL-15 functions in a muscle-to-fat endocrine axis which modulates fat:lean body composition and insulin sensitivity.  相似文献   

8.
9.
Aldosterone is considered as a new cardiovascular risk factor that plays an important role in metabolic syndrome; however, the underlying mechanism of these effects is not clear. Hypoadiponectinemia and elevated circulating concentration of plasminogen activator inhibitor-1 (PAI-1) are causally associated with obesity-related insulin resistance and cardiovascular disease. The aim of the present study is to investigate the effect of aldosterone on the production of adiponectin and PAI-1 in 3T3-L1 adipocytes. Northern and Western blot analyses revealed that aldosterone treatment inhibited adiponectin mRNA expression and secretion and simultaneously enhanced PAI-1 mRNA expression and secretion in a time- and dose-dependent manner. Rosiglitazone did not prevent aldosterone's effect on adiponectin or PAI-1 expression. In contrast, tumor necrosis factor (TNF)-α produced dramatic synergistic effects on adiponectin and PAI-1 expression when added together with aldosterone. Furthermore, the effects of aldosterone on adiponectin and PAI-1 expression appear to be mediated through glucocorticoid receptor (GR) but not mineralocorticoid receptor (MR). These results suggest that the effects of aldosterone on adiponectin and PAI-1 production are one of the underlying mechanisms linking it to insulin resistance, metabolic syndrome and cardiovascular disease.  相似文献   

10.
11.
Several studies have demonstrated increases in acylation stimulating protein (ASP), and precursor protein C3 in obesity, diabetes and dyslipidemia, however the nature of the regulation is unknown. To evaluate chronic hormonal and pharmaceutical mediated changes in ASP and potential mechanisms, 3T3‐L1 adipocytes were treated with physiological concentrations of relevant hormones and drugs currently used in treatment of metabolic diseases for 48 h. Medium ASP production and C3 secretion were evaluated in relation to changes in adipocyte lipid metabolism (cellular triglyceride (TG) mass, non‐esterified fatty acid (NEFA) release and real‐time FA uptake). Chylomicrons increased ASP production (up to 411 ± 133% P < 0.05), while leptin, triiodothyronine, and β‐blockers atenolol and propranolol had no effect. Dexamethasone, lovastatin, rosiglitazone and rimonabant decreased ASP production (?53 to ?85%, P < 0.05), associated with a decrease in the precursor protein C3 (?37% to ?65%, P < 0.01). By contrast, epinephrine, progesterone, testosterone, angiotensin II and metformin also decreased ASP (?54% to ?100%, P < 0.05), but without change in precursor protein C3, suggesting a direct effect on convertase activity, possibly mediated by interference (except metformin) due to marked increases in NEFA (5.6–31‐fold, increased P < 0.05). Both lovastatin and metformin induced decreases in ASP were also associated with decreased TG mass (maximal ?60%, P < 0.05) and real‐time FA uptake (maximum ?75%, P < 0.05), suggesting a change in adipocyte differentiation status. These in vitro results are consistent with in vivo ASP profiles in subjects, and suggest that ASP may be regulated through precursor C3 availability, convertase activity and differentiation status. J. Cell. Biochem. 109: 896–905, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
O‐GlcNAc (2‐acetamino‐2‐deoxy‐β‐D‐glucopyranose), an important modification for cellular processes, is catalyzed by O‐GlcNAc transferase and O‐GlcNAcase. O‐(2‐acetamido‐2‐deoxy‐D‐glucopyranosylidene) amino‐N‐phenylcarbamate (PUGNAc) is a nonselective inhibitor of O‐GlcNAcase, which increases the level of protein O‐GlcNAcylation and is known to induce insulin‐resistance in adipose cells due to uncharacterized targets of this inhibitor. In this study, using ATP affinity chromatography, we applied a targeted proteomic approach for identification of proteins induced by treatment with PUGNAc. For optimization of proteomic methods using ATP affinity chromatography, comparison of two cell lines (3T3‐L1 adipocytes and C2C12 myotubes) and two different digestion steps was performed using four different structures of immobilized ATP‐bound resins. Using this approach, based on DNA sequence homologies, we found that the identified proteins covered almost half of ATP‐binding protein families classified by PROSITE. The optimized ATP affinity chromatography approach was applied for identification of proteins that were differentially expressed in 3T3‐L1 adipocytes following treatment with PUGNAc. For label‐free quantitation, a gel‐assisted method was used for digestion of the eluted proteins, and analysis was performed using two different MS modes, data‐independent (671 proteins identified) and data‐dependent (533 proteins identified) analyses. Among identified proteins, 261 proteins belong to nucleotide‐binding proteins and we focused on some nucleotide‐binding proteins, ubiquitin‐activation enzyme 1 (E1), Hsp70, vasolin‐containing protein (Vcp), and Hsp90, involved in ubiquitin‐proteasome degradation and insulin signaling pathways. In addition, we found that treatment with PUGNAc resulted in increased ubiquitination of proteins in a time‐dependent manner, and a decrease in both the amount of Akt and the level of phosphorylation of Akt, a key component in insulin signaling, through downregulation of Hsp90. In this study, based on a targeted proteomic approach using ATP affinity chromatography, we found four proteins related to ubiquitination and insulin signaling pathways that were induced by treatment with PUGNAc. This result would provide insight into understanding functions of PUGNAc in 3T3‐L1 cells.  相似文献   

13.
14.
15.
16.
Tumour necrosis factor‐α (TNF‐ α)is a major contributor to the pathogenesis of insulin resistance associated with obesity and type 2 diabetes. It has been found that endogenous hydrogen sulfide (H2S) contributes to the pathogenesis of diabetes. We have hypothesized that TNF‐α‐induced insulin resistance is involved in endogenous H2S generation. The aim of the present study is to investigate the role of endogenous H2S in TNF‐α‐induced insulin resistance by studying 3T3‐L1 adipocytes. We found that treatment of 3T3‐L1 adipocytes with TNF‐α leads to deficiency in insulin‐stimulated glucose consumption and uptake and increase in endogenous H2S generation. We show that cystathionine γ‐lyase (CSE) is catalysed in 3T3‐L1 adipocytes to generate H2S and that CSE expression and activity are upregulated by TNF‐α treatment. Inhibited CSE by its potent inhibitors significantly attenuates TNF‐α‐induced insulin resistance in 3T3‐L1 adipocytes, whereas H2S treatment of 3T3‐L1 adipocytes impairs insulin‐stimulated glucose consumption and uptake. These data indicate that endogenous CSE/H2S system contributes to TNF‐α‐caused insulin resistance in 3T3‐L1 adipocytes. Our findings suggest that modulation of CSE/H2S system is a potential therapeutic avenue for insulin resistance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Obesity is an increasing nutritional disorder in developed countries, and oxidative stress has been identified as a key factor in numerous pathologies such as diabetes, inflammation, and atherosclerosis, which are favored by obesity. The objective of the present study was to investigate the effects of oxidative stress in 3T3-L1 adipose cells on two parameters involved in metabolic complications associated with obesity, namely adiponectin secretion and lactate production. Differentiated 3T3-L1 adipose cells were exposed to increasing concentrations of glucose oxidase. 4-Hydroxynonenal (4-HNE), a relevant lipid peroxidation by-product which may affect several metabolic processes in making covalent adducts with various molecules; adiponectin secretion; and lactate production were measured in response to glucose oxidase exposure. Results show an inhibition of adiponectin mRNA expression by glucose oxidase and a significant inverse correlation between 4-HNE formation and adiponectin secretion. Furthermore, 4-HNE alone inhibits adiponectin production by 3T3-L1. On the other hand, glucose oxidase and 4-HNE significantly stimulated lactate production by 3T3-L1 adipocytes. These results demonstrate that adipose cells are highly sensitive to oxidative stress, with subsequent decreased adiponectin secretion and increased lactate production, two events involved in the development of insulin resistance.  相似文献   

18.
19.

Objective:

Interleukin‐1β (IL‐1β) has recently been implicated as a major cytokine that is involved in the pancreatic islet inflammation of type 2 diabetes mellitus. This inflammation impairs insulin secretion by inducing beta‐cell apoptosis. Recent evidence has suggested that in obesity‐induced inflammation, IL‐1β plays a key role in causing insulin resistance in peripheral tissues.

Design and Methods:

To further investigate the pathophysiological role of IL‐1β in causing insulin resistance, the inhibitory effects of IL‐1β on several insulin‐dependent metabolic processes in vitro has been neutralized by XOMA 052. The role IL‐1β plays in insulin resistance in adipose tissue was assessed using differentiated 3T3‐L1 adipocytes and several parameters involved in insulin signaling and lipid metabolism were examined.

Results and Conclusion:

IL‐1β inhibited insulin‐induced activation of Akt phosphorylation, glucose transport, and fatty acid uptake. IL‐1β also blocked insulin‐mediated downregulation of suppressor of cytokine signaling‐3 expression. Co‐preincubation of IL‐1β with XOMA 052 neutralized nearly all of these inhibitory effects in 3T3‐L1 adipocytes. These studies provide evidence, therefore, that IL‐1β is a key proinflammatory cytokine that is involved in inducing insulin resistance. These studies also suggest that the monoclonal antibody XOMA 052 may be a possible therapeutic to effectively neutralize cytokine‐mediated insulin resistance in adipose tissue.  相似文献   

20.
Adiponectin, one of adipokines that is secreted from adipocytes, plays an important role in the regulation of glucose and lipid metabolism. Paradoxically, serum concentrations of adiponectin are decreased in obese and type 2 diabetic patients, although it is produced in adipose tissue. On the other hand, plasma TNF-alpha levels are increased in such subjects. In the present study, the mechanism by which adiponectin is regulated by TNF-alpha was investigated. The decreased adiponectin mRNA levels by TNF-alpha were partially recovered by treatment with a c-Jun N-terminal kinase (JNK) inhibitor or the PPAR-gamma agonist rosiglitazone in 3T3-L1 adipocytes. Interestingly, however, cotreatment with the JNK inhibitor and rosiglitazone led to a recovery of TNF-alpha-mediated adiponectin suppression to the control level. The JNK inhibitor regulated the expression of adiponectin by the increase of PPAR-gamma DNA binding activity and the recovery of its mRNA expression while rosiglitazone acted via a PPAR-gamma independent pathway which remains to be elucidated. These findings suggest that the JNK signaling pathway, activated by TNF-alpha, is involved in the regulation of adiponectin expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号