首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infection of mouse L cells by vesicular stomatitis virus results in the inhibition of cellular protein synthesis. Lysates prepared from these infected cells are impaired in their ability to translate endogenous or exogenous cellular and viral mRNAs. The ability of initiation factors from rabbit reticulocytes to stimulate protein synthesis in these lysates was examined. Preparations of eukaryotic initiation factor 2 (eIF-2) and the guanine nucleotide exchange factor (GEF) stimulated protein synthesis strongly in L cell lysates from infected cells but only slightly in lysates from mock-infected cells. Maximal stimulation was obtained when a fraction containing eukaryotic initiation factors 4B (eIF-4B) and 4F (eIF-4F) was also present. In lysates from infected cells, these initiation factors increased endogenous cellular mRNA translation on the average 2-fold. In contrast, endogenous viral mRNA translation was increased to a much greater extent: the M protein was stimulated 8-fold, NS 5-fold, N 2.5-fold, and G 12-fold. When fractions containing eIF-4B, eIF-4F, or eIF-4A were added to these lysates in the presence of eIF-2, all three stimulated translation. Fractions containing rabbit reticulocyte initiation factors eIF-3 and eIF-6 had no effect on translation in either lysate. The results suggest that lysates from infected L cells are defective in the catalytic utilization of eIF-2 and deficient in mRNA binding protein activity.  相似文献   

2.
Two polypeptide chain initiation factors, eukaryotic initiation factor 2 (eIF-2) and guanine nucleotide exchange factor (GEF), were isolated from rat liver. Two forms of eIF-2 were identified, one contained three subunits (alpha, beta, and gamma), and the other contained only the alpha- and gamma-subunits. The three-subunit form was similar to eIF-2 from rabbit reticulocytes with respect to the sedimentation coefficient, Stokes radius, molecular weight of the alpha- and gamma-subunits, ability to restore protein synthesis in hemin-deficient reticulocyte lysate, and immunological cross-reactivity of the alpha-subunits using antibodies against liver eIF-2. In contrast, the beta-subunits of the liver and reticulocyte factors were distinct; they had different molecular weights, and antibodies against rat liver eIF-2 beta did not recognize the beta-subunit of the reticulocyte factor. Furthermore, the GDP dissociation constant for reticulocyte eIF-2 was more than twice that of the liver factor. GEF from rat liver reversed GDP inhibition of the ternary complex assay and catalyzed the exchange of eIF-2-bound GDP for free GDP or GTP, characteristics ascribed to the corresponding protein from rabbit reticulocytes. However, its subunit composition and molecular weight were different from those reported for reticulocyte GEF. The T1/2 for GDP exchange mediated by GEF was about 5-fold slower with two-subunit than with three-subunit eIF-2. In addition, the KD for GDP was lower for two-subunit than for three-subunit eIF-2 when GEF was present. Taken together, these data demonstrate species-associated variability in the beta-subunit of eIF-2 and suggest a crucial role for the beta-subunit in the functional interaction of eIF-2 and GEF.  相似文献   

3.
Initiation of poliovirus RNA translation by internal entry of ribosomes is believed to require the participation of trans-acting factors. The mechanism of action of these factors is poorly defined. The limiting amount of one of these factors, La protein, in rabbit reticulocyte lysates (RRL) has been postulated to partially explain the inefficient translation of poliovirus RNA in this system. To further characterize La activity in translation and to identify other potential limiting factors, we assayed the ability of La protein as well as purified initiation factors, eIF-2, guanine nucleotide exchange factor (GEF), eIF-4A, eIF-4B, eIF-4F, and eIF-3, to stimulate the synthesis of P1, the capsid precursor protein, in poliovirus type 1 (Mahoney) RNA-programmed RRL. Of the proteins tested, only La, GEF, and to some extent eIF-2 stimulated the synthesis of P1. The enhanced translation of P1 in response to La occurred concomitantly with the inhibition of synthesis of most aberrant polypeptides, resulting from initiation in the middle of the genome. Deletion of the carboxy-terminal half (214 amino acids) of La did not decrease its binding to the poliovirus 5' untranslated region but abrogated the stimulatory and correcting activity in translation. In contrast to La, GEF and eIF-2 stimulated the overall translation and increased the synthesis of aberrant products as well as P1. Neither La, GEF, nor any other factor stimulated translation of encephalomyocarditis virus RNA in RRL. The implications of these findings for the mechanism of internal translation initiation on picornavirus RNAs are discussed.  相似文献   

4.
We have previously reported that addition of Ca2+ and phospholipid (PL) inhibits translation in hemin-containing reticulocyte lysates through activation of a eukaryotic protein synthesis initiation factor (eIF-2) kinase. The possibility that this activation was mediated by a Ca2+-PL-dependent protein kinase (protein kinase C, PKC) appeared unlikely by the observation that it was prevented or reversed by NADPH-generating systems. Nevertheless, reticulocyte lysates contain a potent PKC activity and we deemed it desirable to isolate this enzyme to answer unequivocally the question whether it does or does not activate eIF-2 alpha kinase. We have purified reticulocyte PKC to near homogeneity with Mr 95,500 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme absolutely depended upon both Ca2+ and phosphatidylserine for activity on histone H1 or the beta-subunit of initiation factor eIF-2 and underwent autophosphorylation in a Ca2+- and PL-dependent manner. Mild treatment with trypsin yielded an Mr 82,000 polypeptide that still required Ca2+ and PL for activity. This Mr agrees with that reported for other PKCs, suggesting that these enzymes may undergo limited degradation during isolation. Further proteolytic treatment converted the reticulocyte enzyme into a Ca2+- and PL-dependent form, as is known for PKCs from other sources. The highly purified PKC had no effect on translation in hemin-supplemented reticulocyte lysates.  相似文献   

5.
Interactions of eukaryotic 5-dimethylaminonaphthalene-1-sulfonyl-initiation factor 2 (eIF-2) from rabbit reticulocytes and the guanine nucleotide exchange factor ( GEF ), Met-tRNAf, GTP, and GDP were monitored by changes in fluorescence anisotropy and radioactive filtration assays. At 1 mM Mg2+, radioactive filtration assays demonstrate that GEF is necessary for nucleotide exchange. We did not observe a GDP dependence in the association reaction of eIF-2 X GEF for GDP concentrations from 0.01 to 20 microM. This is in disagreement with the model: eIF-2 X GDP + GEF in equilibrium eIF-2 X GEF + GDP. The addition of GTP caused a decrease in fluorescence anisotropy which is interpreted as a dissociation of eIF-2 X GEF . We propose an asymmetrical model of ternary complex (eIF-2 X GTP X Met-tRNAf) formation where 1) GDP does not displace GEF and 2) GTP replaces GEF and presumably GDP. For reticulocyte eIF-2, phosphorylation of the alpha subunit greatly inhibits protein synthesis. This inhibition derives neither from failure of GEF to bind to eIF-2(alpha P) nor from greatly enhanced binding of GEF . The inhibition results from the requirement of very high levels of GTP (100 microM) to dissociate the eIF-2(alpha P) X GEF complex.  相似文献   

6.
Studies on the recycling of eukaryotic initiation factor 2 (eIF-2) during protein synthesis in normal and heme-deficient reticulocyte lysates indicate that eIF-2 binds physiologically to the 60 S ribosomal subunit. Several findings suggest that the 60 S subunit serves as a carrier for eIF-2 during protein synthesis. The addition of purified eIF-2 (beta-32P) to normal hemin-supplemented lysates results in its binding to polyribosomal 60 S subunits; the binding is temperature-dependent. In lysates inhibited by heme deficiency, phosphorylated eIF-2 alpha can be detected on polyribosomal 60 S subunits early in the initial linear phase of protein synthesis; after polyribosomal disaggregation and shut-off of protein synthesis, phosphorylated eIF-2 alpha accumulates on free 60 S ribosome subunits and on the 60 S subunits of 80 S ribosome couples. The phosphorylated eIF-2 alpha associated with the 60 S subunits in heme-deficient lysates appears to be present as the binary complex [eIF-2 (alpha P) X GDP]; the binding of this complex to the 60 S subunit is tight and is not affected by treatment with 25 mM EDTA or by sedimentation in sucrose gradients. Reversal of the inhibition of protein synthesis in heme-deficient lysates by the addition of reversing factor results in a rapid binding of reversing factor to the 60 S subunits and a concomitant dissociation of [eIF-2(alpha P) X GDP]. These findings suggest that the [eIF-2 X GDP] binary complex formed during the assembly of the 80 S initiation complex binds to the 60 S subunit of polyribosomes and is subsequently released by the action of reversing factor.  相似文献   

7.
Double stranded RNA (dsRNA) induced inhibitor (dRI) has been partially purified (80–100 fold). The dRI inhibits protein synthesis in rabbit reticulocyte lysates; the inhibition is overcome by the initiation factor eIF-2. The dRI preparations phosphorylate the 38,000-dalton subunit of eIF-2. Heme-deficiency in rabbit reticulocyte lysates also induces a translational inhibitor (HRI) which inhibits protein chain initiation by specifically phosphorylating the 38,000-dalton subunit of eIF-2. To establish correlation of the mechanism of inhibition of protein synthesis by dRI and HRI, the phosphopeptide patterns of eIF-2 phosphorylated by using HRI or dRI are compared. Treatment with various proteases of eIF-2 phosphorylated by HRI or dRI yield identical phosphopeptide patterns. This finding suggests that HRI and dRI phosphorylate the same site(s) of the 38,000-dalton subunit of eIF-2 and raises the possibility that dRI may also inhibit protein chain initiation by the mechanism similar to that of HRI.  相似文献   

8.
A guanine nucleotide exchange factor (GEF), catalyzing the exchange of GDP bound to initiation factor eIF-2 for GTP, has been isolated from S3 HeLa cells as the eIF-2 X GEF complex and extensively purified by procedures originally developed for purification of GEF from rabbit reticulocytes. The HeLa cell factor resembles rabbit reticulocyte eIF-2 X GEF in polypeptide composition, catalytic activity, and inactivation by alpha-phosphorylated eIF-2.  相似文献   

9.
Double-stranded RNA (dsRNA) inhibits protein synthesis initiation in rabbit reticulocyte lysates by the activation of a latent dsRNA-dependent cAMP-independent protein kinase which phosphorylates the α-subunit of the eukaryotic initiation factor eIF-2. In this study, we describe a dsRNA-like component which is present in preparations of HeLa mRNA (poly A+) isolated from total cytoplasmic RNA. The inhibitory species in the HeLa cytoplasmic mRNA was detected by (a) its ability to inhibit protein synthesis with biphasic kinetics in reticulocyte lysates translating endogenous globin mRNA, and (b) by the inefficient translation of HeLa cytoplasmic mRNA in a nuclease-treated mRNA-dependent reticulocyte lysate. The inhibitory component was characterized as dsRNA by several criteria including (i) the ability to activate the lysate dsRNA-dependent eIF-2α kinase (dsI); (ii) the prevention of both dsI activation and inhibition of protein synthesis by high levels of dsRNA or cAMP; (iii) the reversal of inhibition by eIF-2; and (iv) the inability to inhibit protein synthesis in wheat germ extracts which lack latent dsI. By the same criteria, the putative dsRNA component(s) appears to be absent from preparations of HeLa mRNA isolated exclusively from polyribosomes.  相似文献   

10.
Besides heme deficiency, protein synthesis in rabbit reticulocyte lysates becomes inhibited upon exposure to a variety of agents that mimic conditions which induce the heat shock response in cells. This inhibition has been demonstrated to be due primarily to the activation of the heme-regulated eIF-2 alpha kinase (HRI) which causes an arrest in the initiation of translation. In this report, the sensitivity of protein synthesis in hemin-supplemented lysates to inhibition by Hg2+, GSSG, methylene blue, and heat shock was examined in six different reticulocyte lysate preparations. The extent to which translation was inhibited in response to Hg2+, GSSG, methylene blue, and heat shock correlated inversely with the relative levels of the 70-kDa heat shock proteins (hsp 70) and a 56-kDa protein (p56) present in the lysates determined by Western blotting. The ability of hemin to restore protein synthesis upon addition to heme-deficient lysates was also examined. While the restoration of protein synthesis correlated roughly with the levels of hsp 90 present, the results also suggest that the heme regulation of HRI probably involves the interaction of HRI with several factors present in the lysate besides hsp 90. A comparison of two lysate preparations, which had a 2-fold difference in their protein synthesis rates, indicated that the slower translational rate of the one lysate could be accounted for by its low level of constitutive eIF-2 alpha phosphorylation, with its accompanying decrease in the eIF-2B activity and lower level of polyribosome loading. The present study supports the notion that the previously demonstrated interaction of HRI with hsp 90, hsp 70, and p56 in reticulocyte lysates may play a direct role in regulating HRI activation or activity. We hypothesize that the competition of denatured protein and HRI for the binding of hsp 70 may be a molecular signal that triggers the activation of HRI in reticulocyte lysates in response to stress. Possible functions for p56 in the regulation of HRI activity are also discussed.  相似文献   

11.
Protein synthesis in sea urchin eggs is stimulated dramatically upon fertilization. We previously demonstrated that this stimulation is primarily due to an increase in the rate of polypeptide chain initiation which in turn may be regulated at the level of recycling of eukaryotic initiation factor 2 (eIF-2) (Colin, A. M., Brown, B. D., Dholakia, J. N., Woodley, C. L., Wahba, A. J., and Hille, M. B. (1987) Dev. Biol. 123, 354-363). We have now purified eIF-2 from sea urchin Strongylocentrotus purpuratus blastulae to apparent homogeneity by chromatography on DEAE-cellulose, phosphocellulose, Mono Q, Mono P, and Mono S columns. The factor, which differs from mammalian eIF-2, is composed of three non-identical subunits with apparent molecular weights of 40,000-alpha; 47,000-beta, and 58,000-gamma as estimated by sodium dodecyl-polyacrylamide gel electrophoresis. Antibodies raised against rabbit reticulocyte eIF-2 do not cross-react with sea urchin eIF-2. The binding of Met-tRNA(f) to sea urchin eIF-2 is totally dependent on GTP. A 4-fold stimulation in the rate of protein synthesis in unfertilized sea urchin egg extracts is observed by the addition of 1 micrograms of purified eIF-2. The factor also binds GDP to form a binary (eIF-2.GDP) complex which is stable in the presence of Mg2+. GDP binding to sea urchin eIF-2 inhibits ternary (eIF-2-GTP.[35S]Met-tRNA(f) complex formation. The rabbit reticulocyte guanine nucleotide exchange factor (GEF) catalyzes the exchange of GDP bound to sea urchin eIF-2 for GTP and stimulates ternary complex formation. The requirement of GEF for the recycling of eIF-2 suggests that protein synthesis in sea urchins is similar to that in mammalian systems and may also be regulated at the level of GEF activity. The reticulocyte heme-controlled repressor phosphorylates the alpha-subunit of eIF-2 from both sea urchins and rabbit reticulocytes. However, casein kinase II which phosphorylates the beta-subunit of the reticulocyte factor specifically phosphorylates the alpha-subunit of sea urchin eIF-2. In this respect, the sea urchin factor is similar to eIF-2 isolated from other nonmammalian sources. Since both heme controlled repressor and casein kinase II phosphorylate the alpha-subunit of sea urchin eIF-2 caution should be exercised when interpreting the significance of eIF-2(alpha) phosphorylation in sea urchins.  相似文献   

12.
There are conflicting reports regarding Mg2+-inhibition of ternary complex formation by reticulocyte eIF-2. Several laboratories have reported that eIF-2 is isolated as eIF-2.GDP and Mg2+ inhibits ternary complex formation, as in the presence of Mg2+, GDP remains tightly bound to eIF-2 and prevents ternary complex formation. A protein factor, GEF is necessary for GDP displacement and subsequent ternary complex formation. Other laboratories have reported that Mg2+ has no effect on eIF-2 activity and eIF-2 forms near stoichiometric amount of ternary complex in the presence of Mg2+. In this paper, we provide evidence which suggests that the Mg2+-insensitive eIF-2 activity as reported by several laboratories might have been the result of the use of high Met-tRNA(f) concentrations in their assays as the nucleotides in excess tRNA bound Mg2+ in the reaction mixture and there was no free Mg2+ available to inhibit eIF-2 activity. Our data will show that the addition of excess tRNA promotes non-enzymatic GDP displacement from eIF-2.GDP and relieves Mg2+ inhibition.  相似文献   

13.
14.
Eukaryotic translation initiation factor-4A (eIF-4A) plays a critical role in binding of eukaryotic mRNAs to ribosomes. It has been biochemically characterized as an RNA-dependent ATPase and RNA helicase and is a prototype for a growing family of putative RNA helicases termed the DEAD box family. It is required for mRNA-ribosome binding both in its free form and as a subunit of the cap binding protein complex, eIF-4F. To gain further understanding into the mechanism of action of eIF-4A in mRNA-ribosome binding, defective eIF-4A mutants were tested for their abilities to function in a dominant negative manner in a rabbit reticulocyte translation system. Several mutants were demonstrated to be potent inhibitors of translation. Addition of mutant eIF-4A to a rabbit reticulocyte translation system strongly inhibited translation of all mRNAs studied including those translated by a cap-independent internal initiation mechanism. Addition of eIF-4A or eIF-4F relieved inhibition of translation, but eIF-4F was six times more effective than eIF-4A, whereas eIF-4B or other translation factors failed to relieve the inhibition. Kinetic experiments demonstrated that mutant eIF-4A is defective in recycling through eIF-4F, thus explaining the dramatic inhibition of translation. Mutant eIF-4A proteins also inhibited eIF-4F-dependent, but not eIF-4A-dependent RNA helicase activity. Taken together these results suggest that eIF-4A functions primarily as a subunit of eIF-4F, and that singular eIF-4A is required to recycle through the complex during translation. Surprisingly, eIF-4F, which binds to the cap structure, appears to be also required for the translation of naturally uncapped mRNAs.  相似文献   

15.
The rabbit reticulocyte heme-regulated eIF-2 alpha kinase (HRI) utilizes adenosine-5'-0-(3-thiotriphosphate) (ATP-gamma-S) as a substrate for its autophosphorylation and activation, and for the phosphorylation of eIF-2. The phosphorothioated binary complex [eIF-2(alpha-[35S]P) . GDP], interacted with the reticulocyte reversing factor (RF) in in vitro assays, and inhibited the ability of RF to catalyze GDP exchange from (eIF-2 . [3H]GDP) complexes. The phosphorothioate residue in the binary complex was resistant to phosphatase action under protein synthesis conditions. eIF-2(alpha-[35S]P) . GDP inhibited protein synthesis in hemin-supplemented lysates with biphasic kinetics, but had no effect on protein synthesis in heme-deficient lysates. The data reported here indicate that phosphorylation of eIF-2 . GDP alone, through the ability of eIF-2(alpha-P) . GDP to bind and sequester RF, is sufficient to inhibit protein chain initiation in the reticulocyte lysate.  相似文献   

16.
Rat liver catalase mRNA was translated in a rabbit reticulocyte lysates and wheat germ cell-free system in the presence or absence of hemin and/or a translational inhibitor prepared from reticulocytes, liver cells, and wheat germs. Failure to add hemin to the lysates, or the addition of a hemin-regulated translational inhibitor (HRI) to the hemin-supplemented lysates caused a repressed translation. A preparation of inhibitor from rat liver showed activity similar to that of HRI for this translating system. The translation repression by rat liver inhibitor was reversed by eIF-2 (initiation factor) or GTP, but ATP enhanced the repression. The translation of catalase mRNA in the wheat germ system was not affected by the addition of hemin. An inhibitor prepared from wheat germ extracts, as well as the rat liver inhibitor, markedly decreased the rate of translation. eIF-2, GTP, and ATP behaved in the manner described above. Catalase synthesis in a cell-free system derived from rat liver (using endogenous mRNA) was not influenced by either hemin or the inhibitor. The possibilities are discussed that the synthesis of catalase in liver cells is controlled by a translational inhibitor at the level of chain initiation, and that the formation of the inhibitor from its inactive proinhibitor is regulated by the amount of heme.  相似文献   

17.
The pronounced stimulation of protein synthesis in T lymphocytes in response to mitogens is partly due to increased cell size and hence ribosome number. There is also a large increase in translation rate per ribosome as a result of an increased rate of initiation. In response to mitogen, levels of both eukaryotic initiation factor (eIF)-2 and guanine nucleotide exchange factor, GEF, increase in parallel with ribosomes which is consistent with a general increase in the translational machinery but cannot explain the increase in activity per ribosome. However, as total eIF-2 accumulates, the ratio of phosphorylated eIF-2 alpha (eIF-2(alpha P] to eIF-2 alpha decreases. Further, the levels of eIF-2(alpha P) and GEF in resting T lymphocytes are similar. As eIF-2(alpha P) inhibits GEF by effectively sequestering the exchange factor in an inactive 1:1 complex, the level of GEF available for protein synthesis initiation must be very low in resting cells. Hence, as GEF is synthesized and rises above the level of eIF-2(alpha P), there will be a disproportionate increase in GEF available for initiation compared with the increase in total GEF. This increase in available GEF is probably great enough to support the increase in translation rate per ribosome as well as the increase in ribosome number.  相似文献   

18.
Translational control was studied in extracts of Lytechinus pictus eggs and zygotes. We showed that neither mRNA nor initiation factors alone limit translation in these lysates; rather they are together rate limiting. Added globin mRNA was translated in egg and zygote lysates but overall protein synthesis did not increase significantly as the added RNA competed with the endogenous message. The lysates mimicked the in vivo response, since microinjection of globin mRNA into L. pictus eggs similarly competed with endogenous mRNAs. A number of translational components were used to determine if they would stimulate protein synthesis in these lysates. The addition of globin polyribosomes increased the level of protein synthesis. The majority of this increase was due to reinitiation of the globin mRNA, and under these conditions the level of endogenous protein synthesis in both egg and zygote extracts did not change. The addition of crude initiation factors alone did not appreciably alter the rate of protein synthesis in the egg lysates. However, in the presence of added mRNA, these initiation factors stimulated translation two- to fourfold. Of all the initiation factors tested, only the guanine nucleotide exchange factor (GEF, eIF-2B, RF) significantly increased protein synthesis when globin mRNA was present. The addition of an unfractionated initiation factor preparation further stimulated protein synthesis in the presence of added GEF and mRNA, suggesting that a component other than mRNA and GEF was also limiting in these egg lysates. Other initiation factors, including eIF-2, eIF-4A, eIF-4B, and eIF-4F, did not substitute for the component in the unfractionated initiation factor preparation. We propose that alkalinization of the cytoplasm and the subsequent activation of initiation factors and mRNAs contribute to the large stimulation of protein synthesis in echinoid eggs after fertilization. Furthermore, we discuss the possibility that the increase in NADPH at the expense of NAD+, which occurs within 3 min after fertilization, may lead to the activation of GEF.  相似文献   

19.
The formation of 80 S initiation complexes containing labeled viral mRNA was drastically inhibited when mRNA binding assays were carried out with reticulocyte lysate preincubated with double-stranded RNA (dsRNA). When the assays were analyzed by centrifugation on sucrose gradients, the mRNA incubated with lysate pretreated with dsRNA sedimented as a 48 S complex. Met-tRNA, GDP, and phosphorylated initiation factor eIF-2(alpha P) were shown to co-sediment with the 48 S complex. Therefore, the formation of this complex was attributed to the phosphorylation of eIF-2 alpha by a dsRNA-activated protein kinase. These observations suggested that mRNA could bind to a 40 S ribosomal subunit containing Met-tRNAf, GDP, and eIF-2(alpha P), but the joining of a 60 S ribosomal subunit was inhibited. When the 48 S complex was isolated and incubated with lysate without added dsRNA, the mRNA could form 80 S initiation complexes. The shift of mRNA from 48 S to 80 S complexes was also observed when the eIF-2 alpha kinase activity was inhibited by the addition of 2-aminopurine. This shift was quite slow, however, when compared to the rate of binding of free mRNA to 80 S initiation complexes. The 2-aminopurine was effective in reversing the inhibition of protein synthesis by dsRNA and in maintaining a linear rate of protein synthesis for 3 h in lysates. Without added 2-aminopurine, protein synthesis was inhibited after 90 min even in lysates supplemented with hemin and eIF-2(alpha P) was detected in these lysates. This finding indicated that eIF-2 alpha phosphorylation could be in part responsible for limiting the duration of protein synthesis in mammalian cell-free systems.  相似文献   

20.
Although host protein synthesis is preferentially inhibited, there is a steady decline in the ability of Chinese hamster ovary (CHO) cells infected with vesicular stomatitis virus (VSV) to synthesize both host and viral proteins. We previously reported finding an mRNA-ribonucleoprotein particle (mRNP) that contained all five VSV mRNAs and viral N protein exclusively. This particle apparently regulates translation by sequestering a majority of the VSV mRNA made late in infection and thus rendering it unavailable for protein synthesis. In the present investigation the mRNP was also shown to inhibit in vitro protein synthesis in rabbit reticulocyte and wheat germ lysates programmed with mRNA isolated from VSV-infected cells. The synthesis of eIF-2 X GTP X Met-tRNA (ternary) complex, the first step in initiation of protein synthesis, was markedly inhibited by the mRNP. The inhibition was partially reversed by addition of purified eIF-2 to the inhibited lysate or ternary complex formation reaction. These results indicate a dual role of the mRNP in regulating protein synthesis during infection. Nucleocapsid also inhibited in vitro protein synthesis, although this inhibition was not reversed by eIF-2. Nucleocapsid did not inhibit ternary complex formation in vitro. Consequently, nucleocapsid may also regulate in vivo protein synthesis, but by a mechanism different from the mRNP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号