首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
运用常规ATP酶超微细胞化学定位技术,对宁夏枸杞果实发育不同阶段的韧皮部和果肉库薄壁细胞ATP酶分布进行了观察研究.结果显示,在果实发育过程中SE/CC复合体与周围韧皮薄壁细胞间存在共质体隔离,韧皮薄壁细胞及果肉库薄壁细胞的胞间连丝较少,但是与果肉库薄壁细胞相邻的韧皮薄壁细胞的胞间连丝较多.囊泡和膜泡在筛管、韧皮薄壁细胞和库薄壁细胞中很丰富,并且质膜、囊泡膜、液泡膜上ATP酶沉淀物在韧皮部各细胞分布较少,在果肉库薄壁细胞分布较多,特别是在果实第二次快速生长期,果肉库薄壁细胞膜系统、细胞壁和胞间隙的ATP酶活性剧烈增强.此外,果肉库薄壁细胞的质膜ATP酶具极性分布特点.由此得出,枸杞果实韧皮部卸载是一种需要能量驱动的过程,其卸载途径主要以质外体途径为主,在从韧皮部向果肉库薄壁细胞卸出时可能为共质体和质外体途径共存.膜泡运输是枸杞果实同化物卸出和转运的重要方式,而韧皮薄壁细胞在同化物卸出和转运过程中承担了主要转运角色;果肉库薄壁细胞进行主动和定向卸载、积累同化物的能力很强.  相似文献   

2.
章英才  景红霞 《西北植物学报》2014,34(12):2446-2452
采用ATPase超微细胞化学定位技术,研究灵武长枣果实不同发育阶段韧皮部和果肉库薄壁细胞ATPase分布特征,以明确灵武长枣果实ATPase超微细胞化学定位特征和功能。结果显示:(1)第一次快速生长期SE/CC复合体与周围的薄壁细胞有丰富的胞间连丝,形成共质体连续,韧皮部薄壁细胞之间有丰富的胞间连丝,ATPase反应物在韧皮部各细胞分布较少。(2)缓慢生长期ATPase反应物在韧皮部各细胞分布逐渐增加。(3)第二次快速生长期SE/CC复合体与周围的薄壁细胞缺乏胞间连丝,形成共质体隔离,韧皮薄壁细胞及果肉库薄壁细胞的胞间连丝较少,囊泡和膜泡在筛管、韧皮薄壁细胞和库薄壁细胞中很丰富,质膜、液泡膜、囊泡膜、细胞壁和胞间隙的ATPase活性较高。研究表明,果实在第一次快速生长期同化物从筛分子的卸出主要采取共质体途径,缓慢生长期同化物卸出时可能为共质体和质外体途径共存,第二次快速生长期则主要以质外体途径为主,证明果实不同发育阶段韧皮部同化物卸出路径存在差异。  相似文献   

3.
植物体内光合同化物韧皮部装载和卸出研究进展   总被引:2,自引:0,他引:2  
近年来研究表明,植物体内光合同化物的韧皮部装载和卸出均有其本途径和质外体途径,装载转运的糖类主要有:(2)棉子糖及其人类似物(以共质体方式装载);(2)蔗糖(以质外体方式装载)。同化物的共质体卸出可通过扩散和集中作用实现,而质外体卸出则根据蔗糖在质外体是否水解而分为两种类型。卸出和装载的途径、机理因植物种类及库源关系而不同,也会受生长发育阶段及环境的变化而调整。深入研究韧皮部装载和帛出调控机制,对  相似文献   

4.
章英才  海源  黄月  张媛 《西北植物学报》2020,40(12):2054-2064
韧皮部卸载和韧皮部后运输在调节同化物在果实中的分配和积累方面起着至关重要的作用,而且很大程度上决定着果实的产量和质量。为探讨灵武长枣果实同化物韧皮部卸载和运输途径,以4个时期灵武长枣果实为实验材料,对各个发育时期果实维管束的显微结构进行观察,并综合运用荧光染料活细胞示踪与激光共聚焦扫描显微镜技术实时观察果实内韧皮部同化物卸载路径的变化,为灵武长枣果实同化物积累和品质调控奠定基础。结果显示:(1)膨大前期不仅果实的韧皮部中具有明显的CF绿色荧光,同时在周围薄壁细胞中也分布着CF绿色荧光,筛管伴胞复合体和周围薄壁细胞之间存在着共质体联系。(2)快速膨大期,CF绿色荧光主要局限于果实的韧皮部中,在韧皮部周围薄壁细胞中分布较少,筛管伴胞复合体与周围薄壁细胞之间主要以共质体隔离为主,但也存在着一定的共质体联系。(3)着色期和完熟期,CF绿色荧光局限于果实的韧皮部中,在韧皮部周围薄壁细胞中基本没有CF绿色荧光,果实筛管伴胞复合体与周围薄壁细胞之间是共质体隔离状态,但引入CFDA的同时引入具有质膜通透作用的洋地黄皂苷时,周围薄壁细胞中CF绿色荧光分布明显增加。研究认为,灵武长枣在膨大前期果实韧皮部同化物为共质体卸载途径,快速膨大期果实主要以质外体途径运输同化物,但也通过共质体卸出同化物,着色期和完熟期果实通过质外体途径运输同化物。  相似文献   

5.
该研究应用透射电镜技术,对生长发育过程中的文冠果果实的韧皮部及其周围薄壁细胞的超微结构进行了观察,以探讨文冠果果实同化物韧皮部卸载的细胞学路径及其机理。结果显示:(1)文冠果果实发育过程中,筛分子细胞胞腔较空,几乎没有细胞器,但有类似于囊泡的丝状不定型物存在;伴胞胞质浓密且细胞器丰富,液泡化程度不一,大多数存在多个小液泡;薄壁细胞具有中央大液泡,发育中期富含线粒体、高尔基体、内质网等细胞器,并存在囊泡运输现象,发育后期细胞器发生降解,说明随着果实生长发育,果实内物质代谢和转运活跃程度逐渐下降。(2)果实发育过程中筛分子和伴胞之间始终有胞间连丝,薄壁细胞之间也一直存在大量的胞间连丝,而筛分子-伴胞复合体与薄壁细胞之间只有在果实发育前期和后期存在一定数量的胞间连丝,发育中期却几乎没有胞间连丝。研究结果表明,文冠果果实发育过程中同化物韧皮部卸载路径可能发生了共质体途径-质外体途径-共质体途径的转变。  相似文献   

6.
应用透射电镜技术研究了宁夏枸杞果实韧皮部细胞的超微结构变化。结果表明:(1)随着枸杞果实的发育成熟,果实维管组织中的韧皮部筛分子筛域逐渐变宽,筛孔大而多,通过筛孔的物质运输十分活跃;筛分子和伴胞间有胞间连丝联系,伴胞属传递细胞类型,与其相邻韧皮薄壁细胞和果肉薄壁细胞连接处的细胞界面发生质膜内突,整个筛分子/伴胞复合体与韧皮薄壁细胞之间形成共质体隔离,韧皮部糖分的卸载方式主要以质外体途径进行。(2)韧皮薄壁细胞间的胞间连丝较多,而韧皮薄壁细胞与果肉薄壁细胞的胞间连丝相对较少,但果肉薄壁细胞间几乎无胞间连丝;果肉薄壁细胞之间胞间隙较大,细胞壁和质膜内突间形成较大的质外体空间,为质外体的糖分运输创造了条件。(3)筛管、伴胞、韧皮薄壁细胞和果肉薄壁细胞中丰富的囊泡以及活跃的囊泡运输现象,暗示囊泡也参与了果实糖分的运输过程。研究推测,枸杞果实韧皮部同化物的卸载方式以及卸载后的同化物运输主要以质外体途径为主。  相似文献   

7.
通过向蚕豆叶片饲喂~(14)CO_2,应用液闪和显微放射性自显影技术表明标记同化物经叶脉和果荚韧皮部筛管快速运输至蚕豆种皮。种皮吸收营养、生长,后期逐步降解、供养子叶。种皮内的两类维管束系统同时输送营养并卸出到种皮内侧的质外体空间里。种皮里的反向维管束韧皮部卸出以共质体方式为主。并提供养分供种皮生长,而大部分的同化物由正向完整维管束韧皮部的筛分子一传递细胞进行质外体方式卸出。膨大中的子叶在早期即已成为生理上十分活跃的库。它对标记同化物的摄入随时间进程而急剧上升。  相似文献   

8.
脱落酸在光合产物分配中的作用   总被引:3,自引:0,他引:3  
作物产量最终依赖于光合产物和矿质离子在相互竞争的库器官之间的分配方式,因此,弄清光合产物分配的控制机制显然具有十分重要的意义。植物激素在光合产物分配中起着重要的作用。业已证明,生长素、赤霉素和细胞分裂素能够通过刺激生长过程或直接影响韧皮部装入和卸出或由源向库的运输而增加源和库的强度.近年来,通过对库中脱落酸浓度和生长速率之间的相关性,脱落酸对韧皮部装入和卸出以及库对糖的吸收的响影等方面的研究,证明脱落酸也参与光合产物分配的调控。本  相似文献   

9.
离体蒜苔贮存中薄壁细胞超微结构的变化   总被引:3,自引:0,他引:3  
离体蒜苔贮存中薄壁细胞逐渐衰老,原生质表现出有序的降解和胞间转移。由细胞内膜产生的自体吞噬泡将细胞器消化。降解的原生质组分通过共质体和质外体两种途径转移,并最终运输至顶端作为珠蒜生长的营养。  相似文献   

10.
水稻蔗糖转运蛋白研究进展   总被引:2,自引:0,他引:2  
蔗糖转运蛋白是光合产物运输与分配调控网络中的重要节点,主要参与蔗糖从"源"到"库"的质外体运输,在蔗糖的感应、"源"器官装载、韧皮部长距离运输和"库"器官卸载中起重要作用。总结和分析了水稻蔗糖转运蛋白基因家族的组成、蛋白结构特点、表达与调控特性、生物学功能等方面的研究进展,在此基础上,提出了蔗糖转运蛋白基础理论和应用研究方面存在的不足及应予重视和加强的主要方向。  相似文献   

11.
In the developing wheat grain, photosynthate is transferred longitudinally along the crease phloem and then laterally into the endosperm cavity through the crease vascular parenchyma, pigment strand and nucellar projection. In order to clarify this cellular pathway of photosynthate unloading, and hence the controlling mechanism of grain filling, the potential for symplastic and apoplastic transfer was examined through structural and histochemical studies on these tissue types. It was found that cells in the crease region from the phloem to the nucellar projection are interconnected by numerous plasmodesmata and have dense cytoplasm with abundant mitochondria. Histochemical studies confirmed that, at the stage of grain development studied, an apoplastic barrier exists in the cell walls of the pigment strand. This barrier is composed of lignin, phenolics and suberin. The potential capacity for symplastic transfer, determined by measuring plasmodesmatal frequencies and computing potential sucrose fluxes through these plasmodesmata, indicated that there is sufficient plasmodesmatal cross-sectional area to support symplastic unloading of photosynthate at the rate required for normal grain growth. The potential capacity for membrane transport of sucrose to the apoplast was assessed by measuring plasma membrane surface areas of the various cell types and computing potential plasma membrane fluxes of sucrose. These fluxes indicated that the combined plasma membrane surface areas of the sieve element–companion cell (se–cc) complexes, vascular parenchyma and pigment strand are not sufficient to allow sucrose transfer to the apoplast at the observed rates. In contrast, the wall ingrowths of the transfer cells in the nucellar projection amplify the membrane surface area up to 22-fold, supporting the observed rates of sucrose transfer into the endosperm cavity. We conclude that photosynthate moves via the symplast from the se–cc complexes to the nucellar projection transfer cells, from where it is transferred across the plasma membrane into the endosperm cavity. The apoplastic barrier in the pigment strand is considered to restrict solute movement to the symplast and block apoplastic solute exchange between maternal and embryonic tissues. The implications of this cellular pathway in relation to the control of photosynthate transfer in the developing grain are discussed.  相似文献   

12.
What Is Phloem Unloading?   总被引:19,自引:2,他引:17       下载免费PDF全文
Oparka KJ 《Plant physiology》1990,94(2):393-396
Several studies of phloem unloading have failed to distinguish between transport events occurring at the sieve element/companion cell boundary and subsequent short-distance transport through parenchyma cells. Indirect evidence has been obtained for symplastic unloading in storage and utilization sinks. In other sinks transfer to the apoplast may occur, but not necessarily at the sieve element/companion cell complex, and the evidence for apoplastic phloem unloading is equivocal, as is the role of apoplastic acid invertase in this process. The ability of several types of sink cells to accumulate sugars from the apoplast is discussed in the conflicting light of functional symplastic continuity between sink cells. Attention is drawn to the complexity of the postunloading pathway in many sinks and the difficulty of determining the exact sites of symplast/apoplast solute exchange. Potential future areas for study in the field are highlighted.  相似文献   

13.
P. M. Hayes  J. W. Patrick 《Planta》1985,166(3):371-379
Gibberellic acid (GA3), indole-3-acetic acid (IAA) or kinetin (6N-furfurylaminopurine) applied to the apical regions of decapitated stems of derooted Phaseolus vulgaris plants, promoted 14C-photosynthate transport to the site of hormone application. Hormonal promotion of acropetal photosynthate transport was associated with significant increases in the pool size of free-space sugars at the hormone-treated region of the stem. The hormone-induced increases in the free-space pool size depended on continued phloem transport in the stem stumps while photosynthate leakage from the sink tissues of the stems was unaffected by the hormone treatments. On the basis of these observations, it is concluded that the increases in the pool size of sugars in the stem free-space results from hormonal action on processes that determine rates of sugar unloading from the sieve element-companion cell (se-cc) complexes. Furthermore, since loading of the se-cc complexes in the stem stumps was stimulated by GA3 and IAA and unaffected by kinetin applied at the loading site, hormonal effects on net unloading from the se-cc complexes must be caused by alterations in the efflux component. For winter-grown plants, it was found that predicted increases in sugar transfer through the stem free-space from the se-cc complexes to the sink tissues could account for the observed hormonal stimulation of photosynthate transport. In contrast, for summer-grown plants the higher sugar concentrations in the stem free-space of control plants approached saturation for the sugar-accumulation process. This caused an attenuation of the responsiveness of sugar accumulation by the stem sink tissues to hormone-induced increases in the pool size of sugars in the stem free-space. On this basis it is proposed that the bulk of photosynthates may move radially from the se-cc complexes through the stem symplast of summer-grown plants.  相似文献   

14.
At an early stage of secondary development, the metaphloem sieveelements appeared to be the only functional axial transportconduit in fully elongated stems of P. vulgaris plants. Thereis no apparent barrier to the radial transfer of solutes inthe stem apoplast. However, radial transfer through the stemsymplast could be limited by discontinuities resulting fromprotoplast degeneration of the protophloem fibres and developingsecondary xylem fibres. Estimates of possible sucrose fluxesthrough the apoplastic and symplastic routes indicated thatradial photosynthate transfer from the sieve element-companioncell (se-cc) complexes of the stem metaphloem could follow eithercellular route. In the case of apoplastic transfer, the plasmamembrane surface area of the se-cc complexes is only sufficientto support some form of facilitated movement of sucrose. Incontrast, the plasma membrane surface area of the phloem parenchymais sufficient to permit passive diffusion of sucrose to theapoplast. Plasmodesmatal frequencies suggest that any symplastictransfer to the phloem parenchyma from the sieve elements wouldbe via the companion cells. Phaseolus vulgaris, french bean, stem, photosynthate, radial transfer (photosynthates), cellular pathway  相似文献   

15.
Sieve element unloading: cellular pathway, mechanism and control   总被引:14,自引:0,他引:14  
The transport and distribution of phloem – mobile solutes is predominantly determined by transport processes located at the sink end of the source – transport – sink system. Transport across the sieve element boundary, sieve element unloading, is the first of a series of sink transport processes. Unloading of solutes from the sieve elements may follow an apo- or symplastic route. It is speculated that the unloading pathway is integrated with sink function and that apoplastic unloading is restricted to situations in which movement through the symplast is not compatible with sink function. These situations include axial transport and storage of osmotically active solutes against concentration and turgor gradients between the sieve elements and sink cells. Coupled with alteration in sink function, the cellular pathway of unloading can switch in stems and possibly other sinks. Experimental systems and approaches used to elucidate the mechanism of sieve element unloading are reviewed. Unloading fluxes to the apoplast can largely be accounted for by membrane diffusion in axial sinks. However, the higher fluxes in storage sinks suggests dependence on some form of facilitated transport. Proton sucrose symport is assessed to be a possible mechanism for facilitated efflux of solutes across the sieve element plasma membrane to the sink apoplast. Unloading through the symplast may occur by diffusion or mass flow. The latter mechanism serves to dissipate phloem water and hence prevent the potential elevation of sieve element turgor that would otherwise slow phloem import into the sink. The possibility of energised plasmodesmatal transport is raised. Sieve element unloading must be integrated with subsequent compartmentation and metabolism of the unloaded solute. Solute levels are an obvious basis for control of sieve element unloading, but are found to offer limited scope for a mass action mechanism. Apoplastic, cellular pathway, sieve element, solute transport, symplastic. Translated into a turgor signal, solute levels could regulate the rate of unloading, metabolism and compartmentation forming part of a turgor homeostat irrespective of the pathway of unloading.  相似文献   

16.
The uhrastructure and intercellular connection of the sugar unloading zone (i. e. the phloem in the dorsal vascular bundle and the phloem-surrounding the assimilate sink-cells) of grape ( Vitis vinifera x V. labrusca cv. Jingchao) berry was observed via transmission electron microscopy. The results showed that during the early developmental stages of grape berry, numerous plasmodesmata were found in the phloem between sieve element (SE) and companion cell (CC), between SE/CC complexes, between SE/CC complex and phloem parenchyma cell and in between phloem parenchyma cells, which made the phloem a symplastic integration, facilitating sugar unloading from sieve elements into both companion cells and phloem parenchyma cells via a symplastic pathway. On the contrary, there was almost no plasmodesma between phloem and its surrounding flesh photoassimilate sink-cells, neither in between the flesh photoassimilate sink-cells giving rise to a symplastic isolation both between phloem and its surrounding flesh photoassimilate sink-cells, as well as among the flesh photoassimilate sink-cells. This indicated that both the sugar unloading from phloem and pestphloem transport of sugars should be mainly via an apoplastic pathway. Dining the ripening stage, most of the plasmodesmata between SE/CC complex and the surrounding phloem parenchyma cells were shown to be blocked by the electron-opaque globules, and a phenomenon of plasmolysis was found in a number of companion cells, indicating a symplastic isolation between SE/CC complex and its surrounding parenchynm cells during this phase. The symplastic isolation between the whole phloem and its surrounding photoassimilate sink-cells during the early developmental stages shifted to a symplastic isolation within the phloem during the ripening phase, and thus the symplastic pathway of sugar unloading from SE/CC complex during the early development stages should be replaced by a dominant apoplastic unloading pathway from SE/CC complex in concordance.  相似文献   

17.
Werner D  Gerlitz N  Stadler R 《Protoplasma》2011,248(1):225-235
Developing flowers are important sinks in Arabidopsis thaliana. Their energy demand is covered by assimilates which are synthesized in source leaves and transported via the vasculature. Assimilates are unloaded either symplastically through plasmodesmata or apoplastically by specific transport proteins. Here we studied the pathway of phloem unloading and post-phloem transport in developing gynoecia. Using phloem-mobile fluorescent tracers, we show that phloem unloading into cells of ovule primordia followed a symplastic pathway. Subsequently, the same tracers could not move out of phloem cells into mature ovules anymore. A further change in the mode of phloem unloading occurred after anthesis. In open flowers as well as in outgrowing siliques, the phloem was again unloaded via the symplast. This observed onset of symplastic phloem unloading was accompanied by a change in frequency of MP17-GFP-labeled plasmodesmata. We could also show that the change in cell–cell connectivity was independent of fertilization and increasing sink demand. The presented results indicate that symplastic connectivity is highly regulated and varies not only between different sink tissues but also between different developmental stages.  相似文献   

18.
Evidence for symplastic phloem unloading in sink leaves of barley   总被引:8,自引:0,他引:8  
The pathway of phloem unloading in sink barley (Hordeum vulgare) leaves was studied using a combination of electron microscopy, carboxyfluorescein transport, and systemic movement of barley stripe mosaic virus expressing the green fluorescent protein. Studies of plasmodesmatal frequencies between the phloem and mesophyll indicated a symplastic sieve element- (SE) unloading pathway involving thick-walled and thin-walled SEs. Phloem-translocated carboxyfluorescein was unloaded rapidly from major longitudinal veins and entered the mesophyll cells of sink leaves. Unloading was "patchy" along the length of a vein, indicating that sieve element unloading may be discontinuous along a single vascular bundle. This pattern was mirrored precisely by the unloading of barley stripe mosaic virus expressing the green fluorescent protein. Transverse veins were not utilized in the unloading process. The data collectively indicate a symplastic mechanism of SE unloading in the sink barley leaf.  相似文献   

19.
R. Turgeon 《Planta》1987,171(1):73-81
Phloem unloading in transition sink leaves of tobacco (Nicotiana tabacum L.) was analyzed by quantitative autoradiography. Detectable levels of labeled photoassimilates entered sink leaves approx. 1 h after source leaves were provided with 14CO2. Samples of tissue were removed from sink leaves when label was first detected and further samples were taken at the end of an experimental phloem-unloading period. The amount of label in veins and in surrounding cells was determined by microdensitometry of autoradiographs using a microspectrophotometer. Photoassimilate unloaded from first-, second-and third-order veins but not from smaller veins. Import termination in individual veins was gradual. Import by the sink leaf was completely inhibited by exposing the sink leaf to anaerobic conditions, by placing the entire plant in the cold, or by steam-girdling the sink-leaf petiole. Phloem unloading was completely inhibited by cold; however, phloem unloading continued when the sink-leaf petiole was steam girdled or when the sink leaf was exposed to a N2 atmosphere. Compartmental efflux-analysis indicated that only a small percentage of labeled nutrients was present in the free space after unloading from sink-leaf veins in a N2 atmosphere. The results are consistent with passive symplastic transfer of photoassimilates from phloem to surrounding cells.Symbol VI radio of 14C in veins and interveinal tissue  相似文献   

20.
A potential cellular pathway for photosynthate transfer between the crease phloem and the starchy endosperm of the developing wheat grain has been delineated using fluorescent dyes. Membrane permeable and impermeable dyes have been introduced into the grain through the crease phloem, the endosperm cavity or the dorsal surface of the starchy endosperm. The movement of the symplastic tracer 5-(6)-6-carboxyfluorescein (CF) derived from 5-(6)-6-carboxyfluorescein diacetate (CFDA), from either direction between the crease phloem and the endosperm cavity, indicated that the symplastic pathway was operative from the crease phloem to the nucellar projection. Furthermore, the inward movement of apoplastic tracer trisodium, 3-hydroxy-5,8,10-pyrentrisulphonate (PTS) from the endosperm cavity and that of CF following plasmolysis showed that there was a high resistance to solute transfer within the apoplast of the pigment strand. All dyes entered the modified aleurone and adjacent sub-aleurone bordering the endosperm cavity. Subsequent movement of the symplastic tracers CF and sulphorhodamine G (SRG) into and through the endosperm was rapid. However, the movement of apoplastic tracers PTS and Calcofluor White (CFW) was relatively slow and with tissue plasmolysis, CF was confined to the cytoplasm of the modified aleurone and subaleurone cells. Together, these results demonstrate that there is a high resistance to solute movement within the apoplast of the cells bordering the endosperm cavity. We propose that photosynthate transfer is via the symplast to the nucellar projection where membrane exchange to the endosperm cavity occurs. Uptake from the cavity is by the modified aleurone and small endosperm cells prior to transfer through the symplast to and through the starchy endosperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号