首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aedes aegypti and Aedes albopictus are invasive mosquito species with geographic ranges that have oscillated within Florida since their presence was first documented. Local transmission of dengue, chikungunya, and Zika viruses serves as evidence of the public health importance of these two species. It is important to have detailed knowledge of their distribution to aid in mosquito control efforts and understand the risk of arbovirus transmission to humans. Through a partnership involving the University of Florida Institute of Food and Agricultural Sciences Cooperative Extension Service and the Florida Medical Entomology Laboratory; the Florida Department of Health; and mosquito control agencies throughout Florida, a container mosquito surveillance program involving all life stages was launched in the summer of 2016 to detect the presence of Ae. aegypti and Ae. albopictus. Results from this survey were mapped to provide a picture of the current known distribution of Ae. aegypti and Ae. albopictus in Florida. Aedes aegypti and/or Ae. albopictus were detected in the 56 counties that were part of the survey. Only Aedes albopictus was detected in 26 counties, primarily in the panhandle region of Florida. The results of this work underscore the importance of maintaining container mosquito surveillance in a state where chikungunya, dengue, and Zika viruses are present and where there is continued risk for exotic arbovirus introductions.  相似文献   

2.
We investigated the oviposition behavior of Ae. aegypti and Ae. albopictus. In particular we examined whether small‐scale site characteristics and the presence of conspecifics or congeners altered oviposition by these mosquitoes. Various combinations of females of the two species were allowed to oviposit inside cages among either vegetation (potted plants) or structural components (wood and concrete blocks). Numbers of eggs deposited per female were compared between species, sides, and treatments. Most significant differences between treatments and species involved differences between single species and mixed species treatments. Ae. aegypti deposited more eggs/female in the vegetation side than in the structure side whereas the opposite pattern was evident for Ae. albopictus. Ae. aegypti females had higher frequency of skip oviposition than Ae. albopictus. An average of 63% of the containers in the two‐species treatments contained eggs of both species, with more frequent joint occurrences observed in the treatment with three females of each species than in the treatments with one of each. Our results point to the existence of various interactions between gravid Ae. aegypti and Ae. albopictus females at or near the oviposition sites but further experimental work is necessary to fully characterize the interactions and their specific mechanisms.  相似文献   

3.
As a widespread vector of disease with an expanding range, the mosquito Aedes albopictus Skuse (Diptera: Culicidae) is a high priority for research and management. A. albopictus has a complex life history with aquatic egg, larval and pupal stages, and a terrestrial adult stage. This requires targeted management strategies for each life stage, coordinated across time and space. Population genetics can aid in A. albopictus control by evaluating patterns of genetic diversity and dispersal. However, how life stage impacts population genetic characteristics is unknown. We examined whether patterns of A. albopictus genetic diversity and differentiation changed with life stage at a spatial scale relevant to management efforts. We first conducted a literature review of field-caught A. albopictus population genetic papers and identified 101 peer-reviewed publications, none of which compared results between life stages. Our study uniquely examines population genomic patterns of egg and adult A. albopictus at five sites in Wake County, North Carolina, USA, using 8425 single nucleotide polymorphisms. We found that the level of genetic diversity and connectivity between sites varied between adults and eggs. This warrants further study and is critical for research aimed at informing local management.  相似文献   

4.
Biology of the mosquito Toxorhynchites splendens (Wiedemann) was studied in the laboratory to provide baseline data for using the predatory larvae of this species against those of Aedes albopictus (Skuse) in a biological control programme. The mean incubation time of Tx.splendens eggs was 43.8 h and the time required for newly-hatched larvae to initiate predation was 2.5 h. Mean numbers of prey larvae consumed and killed by each Tx.splendens larva totalled 389 and 345 respectively. The larval period of Tx.splendens was not significantly different for rearing individually or in groups of nine, with equal prey density, and duration of larval development was proportional to prey density. In mass rearing, larval cannibalism was usually observed during days 1-3 post-eclosion. The incidence of cannibalism decreased sharply on the fourth day after hatching when some larvae became fourth-instar. Adult female Tx.splendens usually commenced oviposition on day 4 after emergence. The number of eggs laid daily increased on day 7 and the peak oviposition of 6.3 eggs/female/day occurred on day 11. When oviposition containers were provided only intermittently, gravid females of Tx.splendens scattered most of their eggs on the dry floor of the cage. Viability of eggs laid by females aged 4-14 days was high (60-90%) but decreased to less than 40% as the females aged.  相似文献   

5.
The invasive mosquito Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) was detected for the first time in Spain, in Sant Cugat del Vallès, a city in the north-east of the country (41 degrees 28' N, 2 degrees 4' E, altitude 120 m), during August 2004. A male and one larva were collected in the backyard of a house and in a tree hole, respectively. Dense populations of adults and larvae were found in subsequent surveys, confirming the establishment of the species in the area. This is the first report of the establishment of this species in the Iberian Peninsula.  相似文献   

6.
Eggs of the Asian tiger mosquito Aedes albopictus are fully covered with an air‐covering plastron network that enables them to stay below the surface of the water. Scanning electron microscopy revealed that the chorionic surface was covered with clusters of globular tubercles of different sizes. Histologically, the eggshell provides a typical water‐repellent microarchitecture consisting of an outer exochorion, a membranous endochorion and an intermediate pillar layer. The eggshell has a distinct chorionic tubercle that increases the surface area for gas exchange to enhance respiration capacity. In particular, the chorionic wall gives rise to a hexagonal pattern with smooth and elevated boundaries. In A. albopictus, a set of micropatterns for each hexagon was specified, and each central tubercle was surrounded by 20 small peripheral tubercles. Our fine structural analysis revealed that the partitioning of the surface into numerous hexagonal chorionic sculptures is associated with the Voronoi partition (tessellation), based on the distance to a point in a specific area of the plane. Therefore, the micropatterned surface of the mosquito eggshell appears to not only resist wetting by hydrostatic pressure but also provide resistance to lysate deposition by the biofouling process.  相似文献   

7.
Three experimental approaches were used to evaluate the oviposition deterrency of three insect repellents, AI3-35765, AI3-37220 (piperidine compounds), and the standard N,N-diethyl-3-methylbenzamide (deet) to the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Against laboratory-reared Ae. albopictus gravid females, the EC50 values of AI3-37220, AI3-35765 and deet were 0.004%, 0.008% and 0.011% in laboratory cages and 0.004%, 0.01% and 0.009% in an outdoor screened cage. For a natural population of Ae. albopictus tested in the field, the EC50 values were determined as 0.004%, 0.008% and 0.001%, respectively. Ageing concentrations of 0.1% of each repellent provided >50% effective oviposition deterrency against the laboratory population of Ae. albopictus for 13 days in laboratory cages, for 15 days in the outdoor cage, and for 21 days against field population of Ae. albopictus in Florida. These topical skin repellents are effective oviposition deterrents for Ae. albopictus when employed at relatively low application rates.  相似文献   

8.
Abstract. 1. Hypotheses about declining populations of container-inhabiting Aedes mosquitoes following the invasion by additional species were tested.
2. The larval competition hypothesis was studied experimentally in pure and mixed cultures of Aedes aegypti (L.), A.albopictus (Skuse) and A.triseriatus (Say). The experiments used decomposing leaf litter in the laboratory, as opposed to most previous research which used non-natural food.
3. Resistance to starvation is introduced as a new measure of larval performance and competitiveness. The hypothesis is that more successful larvae store larger energy reserves and resist the lack of food longer.
4. Contrary to previous research showing better performance of A.aegypti in mixed cultures, A.albopictus developed faster and had greater survival when natural food was used.
5. Resistance to starvation was greater in the better performing species (i.e. A.aegypti with non-natural food and A.albopictus with leaf litter). Oxygen consumption by starved larvae was similar in the three container species, and in the ground-water mosquito, A.taeniorhynchus (Wied.), whose resistance to starvation was comparatively very low.  相似文献   

9.
Mosquito‐borne diseases resulting from the expansion of two key vectors, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), continue to challenge whole regions and continents around the globe. In recent years there have been human cases of disease associated with Chikungunya, dengue and Zika viruses. In Europe, the expansion of Ae. albopictus has resulted in local transmission of Chikungunya and dengue viruses. This paper considers the risk that Ae. aegypti and Ae. albopictus represent for the U.K. and details the results of mosquito surveillance activities. Surveillance was conducted at 34 points of entry, 12 sites serving vehicular traffic and two sites of used tyre importers. The most common native mosquito recorded was Culex pipiens s.l. (Diptera: Culicidae). The invasive mosquito Ae. albopictus was detected on three occasions in southern England (September 2016, July 2017 and July 2018) and subsequent control strategies were conducted. These latest surveillance results demonstrate ongoing incursions of Ae. albopictus into the U.K. via ground vehicular traffic, which can be expected to continue and increase as populations in nearby countries expand, particularly in France, which is the main source of ex‐continental traffic.  相似文献   

10.
Locally acquired dengue cases in the continental U.S. are rare. However, outbreaks of dengue‐1 during 2009, 2010, and 2013 in Florida and dengue‐1 and −2 in Texas suggest vulnerability to transmission. Travel and commerce between Puerto Rico and the U.S. mainland is common, which may pose a risk for traveler‐imported dengue cases. Mosquitoes were collected in Florida and used to evaluate their susceptibility to dengue viruses (DENV) from Puerto Rico. Aedes aegypti and Ae. albopictus were susceptible to virus infection with DENV‐1 and −2. No significant differences were observed in rates of midgut infection or dissemination between Ae. aegypti or Ae. albopictus for DENV‐1 (6–14%). Aedes aegypti was significantly more susceptible to midgut infection with DENV‐2 than Ae. albopictus (Ae. aegypti, ∼28%; Ae. albopictus, ∼9%). The dissemination rate with dengue‐2 virus for Ae. aegypti (23%) was greater than Ae. albopictus (0%), suggesting that Ae. albopictus is not likely to be an important transmitter of the DENV‐2 isolate from Puerto Rico. These results are discussed in light of Florida's vulnerability to DENV transmission.  相似文献   

11.
The Aedes scutellaris complex of mosquitoes contains the most important vectors of lymphatic filariasis in the South Pacific region, particularly Aedes polynesiensis. Six microsatellite loci were isolated and characterized from this species; all were polymorphic and appear to be useful markers for population studies. Five of the primer pairs also amplified homologous products from three other species in the A. scutellaris group and from the important dengue vector Aedes albopictus.  相似文献   

12.
Abstract 1. Resource diversity can be an important determinant of individual and population performance in insects. Fallen parts of plants form the nutritive base for many aquatic systems, including mosquito habitats, but the effect of plant diversity on mosquito production is poorly understood. 2. To determine the effects of diverse plant inputs on larval mosquitoes, experiments were conducted that examined how leaves of Vitis aestivalis, Quercus virginiana, Psychotria nervosa, and Nephrolepis exaltata affected the container species Aedes triseriatus and Aedes albopictus. 3. The hypothesis that leaf species have different effects on larval survival, growth, population performance, and oviposition choice of the two mosquito species was tested. The hypothesis that larval performance of A. albopictus responds additively to combinations of the four plant species was also tested. 4. Larval survival and growth differed among the four leaf species, and oviposition preference differed among the two leaf species examined. Measurements of population performance demonstrated significant variation between leaf treatments. Larval outcomes for A. albopictus were significantly affected by leaf combination, and the hypothesis of additivity could be rejected. 5. These results indicate that individual leaf species are important in determining the performance of container dwelling mosquitoes, which grow larger and survive better on mixed‐species resource than expected, based on an additive model of resource utilisation.  相似文献   

13.
Among the numerous molecular markers available in population genetics, microsatellites are one of the most powerful tools developed in recent years. This paper describes the isolation of six polymorphic microsatellite loci in the tiger mosquito Aedes albopictus using an enriched genomic library technique. Such loci should be an efficient tool in population genetic studies for this mosquito species.  相似文献   

14.
Abstract.  In the summer of 2005, the Asian tiger mosquito, Aedes albopictus (Skuse) (Diptera: Culicidae) was found for the first time in the Netherlands. It was collected on the premises of several horticultural companies that import the ornamental plant Dracaena sanderiana (Sparagalus: Dracaenaceae [Agavaceae]), known as Lucky bamboo, from southern China, an area endemic for this mosquito species and for arboviruses transmitted by this vector. Here we report the results of a 1-year survey of the distribution and vector status of Ae. albopictus in Lucky bamboo nurseries in the Netherlands (July 2006–June 2007). As it had been established previously that the presence of this species was linked to the import of Lucky bamboo, the survey was conducted only on sites owned by relevant import companies. In total, 569 adult Ae. albopictus were collected with mosquito traps from 15 of the 17 (88%) glasshouses used by Lucky bamboo importers, none of which were found to be infected with dengue virus. On two occasions there was evidence that Ae. albopictus had escaped from the glasshouses, but, overall, there was no evidence that a population had become established in the greenhouses or elsewhere.  相似文献   

15.
Considering the rapid transmission of the dengue virus, substantial efforts need to be conducted to ward-off the epidemics of dengue viruses. The control effort is depending on chemical insecticides and had aroused undesirable conflicts of insecticide resistance. Here, we study the entomopathogenic fungus, Metarhizium anisopliae as a promising new biological control agent for vector control. The pathogenicity effects of Metarhizium anisopliae against field and laboratory strains of Aedes albopictus and Aedes aegypti larvae were tested using the larvicidal bioassay technique. The results demonstrate that the treatments using M. anisopliae isolate MET-GRA4 were highly effective and able to kill 100% of both Ae. albopictus and Ae. aegypti mosquito larvae at a conidia concentration of 1 × 10?/ml within 7 days of the treatment period. The fungus displayed high larvicidal activity against laboratory and field strain of Ae. aegypti larvae with LC50 values (9.6 × 103/ml, 1.3 × 103/ml) and LC95 values (1.2 × 10?/ml, 5.5 × 105/ml) respectively. For Ae. albopictus, LC50 values for laboratory and field strains were (1.7 × 104/ml, 2.7 × 104/ml) and the LC95 values were (2.1 × 10?/ml, 7.0 × 105/ml) respectively. Interestingly, the susceptibility of field strain towards M. anisopliae was higher as compared to the laboratory strain Aedes larvae. In which, the causative agents of all the dead larvae were verified by the virulence of M. anisopliae and caused morphological deformities on larval body. The findings from this study identify this isolate could be an effective potential biocontrol agent for vector mosquitoes in Malaysia.  相似文献   

16.
The invasive oriental mosquito Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) was detected on Bioko Island for the first time in November 2001. It was found to be well established breeding in artificial containers at Planta, near Malabo, the capital of Equatorial Guinea. Associated species of mosquito larvae were Aedes aegypti (L.), Ae. africanus (Theobald), Culex near decens Theobald, Cx. duttoni Theobald, Cx. quinquefasciatus Say, Cx. tigripes De Grandpré & De Charmoy, Eretmapodites quinquevittatus Theobald and Mansonia africana (Theobald). This is the third tropical African country to be invaded by Ae. albopictus, which has recently spread to many parts of the Americas and Europe--with vector competence for dengue, yellow fever and other arboviruses. In the Afrotropical environment, it will be interesting to monitor the ecological balance and/or displacement between introduced Ae. albopictus and indigenous Ae. aegpyti (domestic, peri-domestic and sylvatic populations).  相似文献   

17.
Abstract.  Cytoplasmic incompatibility (CI) induced by maternally inherited Wolbachia bacteria is a potential tool for the suppression of insect pest species with appropriate patterns of infection. The Asian tiger mosquito Aedes albopictus (Skuse) (Diptera: Culicidae) is known to be infected by two strains of Wolbachia pipientis Hertig (Rickettsiales: Rickettsiaceae), w Alb A and w Alb B, throughout its geographical distribution. This infection pattern theoretically restricts the application of CI-based control strategies. However, Wolbachia can be horizontally transferred using embryonic microinjection to generate incompatible transfected lines harbouring a single new strain of Wolbachia. In order to assess the feasibility of this approach, the effects of Wolbachia removal on mosquito fitness need to be clearly evaluated as the removal of natural superinfection is an inescapable step of this approach. Previous research has shown that uninfected females, produced by antibiotic treatment, showed a decrease in fitness compared with those infected with Wolbachia. In this study, the effect of Wolbachia removal on male fitness was investigated. Longevity and reproductive potential (mating competitiveness and sperm capacity) were assessed in both laboratory cages and greenhouses. No differences were observed between uninfected and infected males with respect to longevity, mating rate, sperm capacity and mating competitiveness in either laboratory conditions or greenhouses. The preservation of fitness in males of Ae. albopictus deprived of natural Wolbachia infection is discussed in relation to the development of incompatible insect technique suppression strategies. Finally, the potential application of aposymbiotic males in mark–release–recapture studies is suggested.  相似文献   

18.
Understanding how interacting abiotic and biotic factors influence colonization rates into different habitat types is critical for both conserving and controlling species. For example, the rapid global spread of Asian tiger mosquitoes, Aedes albopictus, has reduced native species abundances and produced disease outbreaks. Fortunately, bacterial endospores of two Bacillus species (biospesticide) are highly lethal to Ae. albopictus larvae and have been commercially developed to reduce populations. Oviposition habitat selection is the first defense Ae. albopictus females possess against any control substance added to breeding sites, and considerable variation exists in their response to biopesticides. In a field experiment, I crossed the presence/absence of biopesticides, with two canopy (open, closed) and water (high, low) levels at 64 breeding sites, to examine if these interacted to influence oviposition site choice. Avoidance of biopesticide was most pronounced in closed canopy sites and those with low water levels, as all main effects and two‐way interactions influenced oviposition. Oviposition habitat selection represents a possible mechanism of resistance to biopesticides and other methods used to kill mosquito larvae. Future experiments examining how larval density and mortality modify these results should allow for more effective control of this highly invasive species.  相似文献   

19.
Aedes-transmitted arboviruses have spread globally due to the spread of Aedes aegypti and Aedes albopictus. Its distribution is associated with human and physical geography. However, these factors have not been quantified in Cameroon. Therefore, the aim was to develop an Ae. albopictus geo-referenced database to examine the risk factors associated with the vector distribution in Cameroon. Data on the Ae. albopictus presence and absence were collated and mapped from studies in published scientific literature between 2000 and 2020. Publicly available earth observation data were used to assess human geography, land use and climate risk factors related to the vector distribution. A logistic binomial regression was conducted to identify the significant risk factors associated with Ae. albopictus distribution. In total, 111 data points were collated (presence = 87; absence = 24). Different data collection methods and sites hindered the spatiotemporal analysis. An increase of one wet month in a year increased the odds of Ae. albopictus presence by 5.6 times. One unit of peri-urban area increased the odds by 1.3 times. Using publicly available demographic and environmental data to better understand the key determinants of mosquito distributions may facilitate appropriately targeted public health messages and vector control strategies.  相似文献   

20.
Vacuolar ATPase (V-ATPase) is a family of ATP-dependent proton pumps expressed on the plasma membrane and endomembranes of eukaryotic cells. Acidification of intracellular compartments, such as lysosomes, endosomes, and parasitophorous vacuoles, mediated by V-ATPase is essential for the entry by many enveloped viruses and invasion into or escape from host cells by intracellular parasites. In mosquito larvae, V-ATPase plays a role in regulating alkalization of the anterior midgut. We extracted RNA from larval tissues of Aedes albopictus, cloned the full-length sequence of mRNA of V-ATPase subunit A, which contains a poly-A tail and 2,971 nucleotides, and expressed the protein. The fusion protein was then used to produce rabbit polyclonal antibodies, which were used as a tool to detect V-ATPase in the midgut and Malpighian tubules of mosquito larvae. A parasitophorous vacuole was formed in the midgut in response to invasion by Ascogregarina taiwanensis, confining the trophozoite(s). Acidification was demonstrated within the vacuole using acridine orange staining. It is concluded that gregarine sporozoites are released by ingested oocysts in the V-ATPase-energized high-pH environment. The released sporozoites then invade and develop in epithelial cells of the posterior midgut. Acidification of the parasitophorous vacuoles may be mediated by V-ATPase and may facilitate exocytosis of the vacuole confining the trophozoites from the infected epithelial cells for further extracellular development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号