首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Esa1 is the catalytic subunit of the NuA4 histone acetylase (HAT) complex that acetylates histone H4, and it is a member of the MYST family of HAT proteins that includes the MOZ oncoprotein and the HIV-1 Tat interacting protein Tip60. Here we report the X-ray crystal structure of the HAT domain of Esa1 bound to coenzyme A and investigate the protein's catalytic mechanism. Our data reveal that Esa1 contains a central core domain harboring a putative catalytic base, and flanking domains that are implicated in histone binding. Comparisons with the Gcn5/PCAF and Hat1 proteins suggest a unified mechanism of catalysis and histone binding by HAT proteins, whereby a structurally conserved core domain mediates catalysis, and sequence variability within a structurally related N- and C-terminal scaffold determines substrate specificity.  相似文献   

2.
3.
Zheng Y  Mamdani F  Toptygin D  Brand L  Stivers JT  Cole PA 《Biochemistry》2005,44(31):10501-10509
PCAF and GCN5 are histone acetyltransferase (HAT) paralogs which play roles in the remodeling of chromatin in health and disease. Previously, a conformationally flexible loop in the catalytic domain had been observed in the X-ray structures of GCN5 in different liganded states. Here, the conformation and dynamics of this PCAF/GCN5 alpha5-beta6 loop was investigated in solution using tryptophan fluorescence. A mutant human PCAF HAT domain (PCAF(Wloop)) was created in which the natural tryptophan (Trp-514) remote from the alpha5-beta6 loop was replaced with tyrosine and a glutamate within the loop (Glu-641) was substituted with tryptophan. This PCAF(Wloop) protein exhibited catalytic parameters within 3-fold of those of the wild-type PCAF catalytic domain, suggesting that the loop mutation was not deleterious for HAT activity. While saturating CoASH induced a 30% quenching of Trp fluorescence in PCAF(Wloop), binding of the high-affinity bisubstrate analogue H3-CoA-20 led to a 2-fold fluorescence increase. These different effects correlate with the different alpha5-beta6 loop conformations seen previously in X-ray structures. On the basis of stopped-flow fluorescence studies, binding of H3-CoA-20 to PCAF(Wloop) proceeds via a rapid association step followed by a slower conformational change involving loop movement. Time-resolved fluorescence measurements support a model in which the alpha5-beta6 loop in the H3-CoA-20-PCAF(Wloop) complex exists in a narrower ensemble of conformations compared to free PCAF(Wloop). The relevance of loop dynamics to PCAF/GCN5 catalysis and substrate specificity are discussed.  相似文献   

4.
5.
6.
Histone acetyltranferase (HAT) enzymes are the catalytic subunits of multisubunit protein complexes that acetylate specific lysine residues on the N-terminal regions of the histone components of chromatin to promote gene activation. These enzymes, which now include more than 20 members, fall into distinct families that generally have high sequence similarity and related substrate specificity within families, but have divergent sequence and substrate specificity between families. Significant insights into the mode of catalysis and histone substrate binding have been provided by the structure determination of the divergent HAT enzymes Hat1, Gcn5/PCAF and Esa1. A comparison of these structures reveals a structurally conserved central core domain that mediates extensive interactions with the acetyl-coenzyme A cofactor, and structurally divergent N and C-terminal domains. A correlation of these structures with other studies reveals that the core domain plays a particularly important role in histone substrate catalysis and that the N and C-terminal domains play important roles in histone substrate binding. These correlations imply a related mode of catalysis and histone substrate binding by a diverse group of HAT enzymes.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
Poux AN  Marmorstein R 《Biochemistry》2003,42(49):14366-14374
Histone acetyltransferase (HAT) proteins often exhibit a high degree of specificity for lysine-bearing protein substrates. We have previously reported on the structure of the Tetrahymena Gcn5 HAT protein (tGcn5) bound to its preferred histone H3 substrate, revealing the mode of substrate binding by the Gcn5/PCAF family of HAT proteins. Interestingly, the Gcn5/PCAF HAT family has a remarkable ability to acetylate lysine residues within diverse cognate sites such as those found around lysines 14, 8, and 320 of histones H3, H4, and p53, respectively. To investigate the molecular basis for this, we now report on the crystal structures of tGcn5 bound to 19-residue histone H4 and p53 peptides. A comparison of these structures with tGcn5 bound to histone H3 reveals that the Gcn5/PCAF HATs can accommodate divergent substrates by utilizing analogous interactions with the lysine target and two C-terminal residues with a related chemical nature, suggesting that these interactions play a general role in Gcn5/PCAF substrate binding selectivity. In contrast, while the histone H3 complex shows extensive interactions with tGcn5 and peptide residues N-terminal to the target lysine, the corresponding residues in histone H4 and p53 are disordered, suggesting that the N-terminal substrate region plays an important role in the enhanced affinity of the Gcn5/PCAF HAT proteins for histone H3. Together, these studies provide a framework for understanding the substrate selectivity of HAT proteins.  相似文献   

16.
17.
18.
Distinct catalytic mechanisms have been proposed for the Gcn5 and MYST histone acetyltransferase (HAT) families. Gcn5-like HATs utilize an ordered sequential mechanism involving direct nucleophilic attack of the N-epsilon-lysine on the enzyme-bound acetyl-CoA. Recently, MYST enzymes were reported to employ a ping-pong route of catalysis via an acetyl-cysteine intermediate. Here, using the prototypical MYST family member Esa1, and its physiological complex (piccolo NuA4), steady-state kinetic analyses revealed a kinetic mechanism that requires the formation of a ternary complex prior to catalysis, where acetyl-CoA binds first and CoA is the last product released. In the absence of histone acceptor, slow rates of enzyme auto-acetylation (7 x 10(-4) s(-1), or approximately 2500-fold slower than histone acetylation; kcat = 1.6 s(-1)) and of CoA formation (0.0021 s(-1)) were inconsistent with a kinetically competent acetyl-enzyme intermediate. Previously, Cys-304 of Esa1 was the proposed nucleophile that forms an acetyl-cysteine intermediate. Here, mutation of this cysteine (C304A) in Esa1 or within the piccolo NuA4 complex yielded an enzyme that was catalytically indistinguishable from the wild type. Similarly, a pH rate (kcat) analysis of the wild type and C304A revealed an ionization (pKa = 7.6-7.8) that must be unprotonated. Mutation of a conserved active-site glutamate (E338Q) reduced kcat approximately 200-fold at pH 7.5; however, at higher pH, E338Q exhibited nearly wild-type activity. These data are consistent with Glu-338 (general base) activating the N-epsilon-lysine by deprotonation. Together, the results suggest that MYST family HATs utilize a direct-attack mechanism within an Esa1 x acetyl-CoA x histone ternary complex.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号