首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.

Background

Hearing impairment is the most common sensory impairment in humans, affecting 1∶1,000 births. We have identified an ENU generated mouse mutant, Mozart, with recessively inherited, non-syndromic progressive hearing loss caused by a mutation in the synaptojanin 2 (Synj2), a central regulatory enzyme in the phosphoinositide-signaling cascade.

Methodology/Principal Findings

The hearing loss in Mozart is caused by a p.Asn538Lys mutation in the catalytic domain of the inositol polyphosphate 5-phosphatase synaptojanin 2. Within the cochlea, Synj2 mRNA expression was detected in the inner and outer hair cells but not in the spiral ganglion. Synj2 N538K mutant protein showed loss of lipid phosphatase activity, and was unable to degrade phosphoinositide signaling molecules. Mutant Mozart mice (Synj2 N538K/N538K) exhibited progressive hearing loss and showed signs of hair cell degeneration as early as two weeks of age, with fusion of stereocilia followed by complete loss of hair bundles and ultimately loss of hair cells. No changes in vestibular or neurological function, or other clinical or behavioral manifestations were apparent.

Conclusions/Significance

Phosphoinositides are membrane associated signaling molecules that regulate many cellular processes including cell death, proliferation, actin polymerization and ion channel activity. These results reveal Synj2 as a critical regulator of hair cell survival that is essential for hair cell maintenance and hearing function.  相似文献   

2.
Deafness is a really common disorder in humans. It can begin at any age with any degree of severity. Hereditary hearing loss is characterized by a vast genetic heterogeneity with more than 140 loci described in humans but only 65 genes so far identified. Families affected by hearing impairment would have real advantages from an early molecular diagnosis that is of primary relevance in genetic counseling. In this perspective, here we report a family-based approach employing Ion Torrent DNA sequencing technology to analyze coding and UTR regions of 96 genes related to hearing function and loss in a first series of 12 families coming from Italy and Qatar. Using this approach we were able to find the causative gene in 4 out of these 12 families (33%). In particular 5 novel alleles were identified in the following genes LOXHD1, TMPRSS3, TECTA and MYO15A already associated with hearing impairment. Our study confirms the usefulness of a targeted sequencing approach despite larger numbers are required for further validation and for defining a molecular epidemiology picture of hearing loss in these two countries.  相似文献   

3.
Identification of the pathogenic mutations underlying autosomal recessive nonsyndromic hearing loss (ARNSHL) is difficult, since causative mutations in 39 different genes have so far been reported. After excluding mutations in the most common ARNSHL gene, GJB2, via Sanger sequencing, we performed whole-exome sequencing (WES) in 30 individuals from 20 unrelated multiplex consanguineous families with ARNSHL. Agilent SureSelect Human All Exon 50 Mb kits and an Illumina Hiseq2000 instrument were used. An average of 93%, 84% and 73% of bases were covered to 1X, 10X and 20X within the ARNSHL-related coding RefSeq exons, respectively. Uncovered regions with WES included those that are not targeted by the exome capture kit and regions with high GC content. Twelve homozygous mutations in known deafness genes, of which eight are novel, were identified in 12 families: MYO15A-p.Q1425X, -p.S1481P, -p.A1551D; LOXHD1-p.R1494X, -p.E955X; GIPC3-p.H170N; ILDR1-p.Q274X; MYO7A-p.G2163S; TECTA-p.Y1737C; TMC1-p.S530X; TMPRSS3-p.F13Lfs*10; TRIOBP-p.R785Sfs*50. Each mutation was within a homozygous run documented via WES. Sanger sequencing confirmed co-segregation of the mutation with deafness in each family. Four rare heterozygous variants, predicted to be pathogenic, in known deafness genes were detected in 12 families where homozygous causative variants were already identified. Six heterozygous variants that had similar characteristics to those abovementioned variants were present in 15 ethnically-matched individuals with normal hearing. Our results show that rare causative mutations in known ARNSHL genes can be reliably identified via WES. The excess of heterozygous variants should be considered during search for causative mutations in ARNSHL genes, especially in small-sized families.  相似文献   

4.
Sensorineural hearing loss is the most common sensory disorder in humans and derives, in most cases, from inner-ear defects or degeneration of the cochlear sensory neuroepithelial hair cells. Genetic factors make a significant contribution to hearing impairment. While mutations in 51 genes have been associated with hereditary sensorineural nonsyndromic hearing loss (NSHL) in humans, the responsible mutations in many other chromosomal loci linked with NSHL have not been identified yet. Recently, mutations in a noncoding microRNA (miRNA) gene, MIR96, which is expressed specifically in the inner-ear hair cells, were linked with progressive hearing loss in humans and mice. Furthermore, additional miRNAs were found to have essential roles in the development and survival of inner-ear hair cells. Epigenetic mechanisms, in particular, DNA methylation and histone modifications, have also been implicated in human deafness, suggesting that several layers of noncoding genes that have never been studied systematically in the inner-ear sensory epithelia are required for normal hearing. This review aims to summarize the current knowledge about the roles of miRNAs and epigenetic regulatory mechanisms in the development, survival, and function of the inner ear, specifically in the sensory epithelia, tectorial membrane, and innervation, and their contribution to hearing.  相似文献   

5.
Comprehensive genetic testing has the potential to become the standard of care for individuals with hearing loss. In this study, we investigated the genetic etiology of autosomal recessive nonsyndromic hearing loss (ARNSHL) in a Turkish cohort including individuals with cochlear implant, who had a pedigree suggestive of an autosomal recessive inheritance. A workflow including prescreening of GJB2 and a targeted next generation sequencing panel (Illumına TruSightTM Exome) covering 2761 genes that we briefly called as mendelian exome sequencing was used. This panel includes 102 deafness genes and a number of genes causing Mendelian disorders. Using this approach, we identified causative variants in 21 of 29 families. Three different GJB2 variants were present in seven families. Remaining 14 families had 15 different variants in other known NSHL genes (MYO7A, MYO15A, MARVELD2, TMIE, DFNB31, LOXHD1, GPSM2, TMC1, USH1G, CDH23). Of these variants, eight are novel. Mutation detection rate of our workflow is 72.4%, confirming the usefulness of targeted sequencing approach in NSHL.  相似文献   

6.
Mutations in the autosomal genes TMPRSS3, TMC1, USHIC, CDH23 and TMIE are known to cause hereditary hearing loss. To study the contribution of these genes to autosomal recessive, non-syndromic hearing loss (ARNSHL) in India, we examined 374 families with the disorder to identify potential mutations. We found four mutations in TMPRSS3, eight in TMC1, ten in USHIC, eight in CDH23 and three in TMIE. Of the 33 potentially pathogenic variants identified in these genes, 23 were new and the remaining have been previously reported. Collectively, mutations in these five genes contribute to about one-tenth of ARNSHL among the families examined. New mutations detected in this study extend the allelic heterogeneity of the genes and provide several additional variants for structure-function correlation studies. These findings have implications for early DNA-based detection of deafness and genetic counseling of affected families in the Indian subcontinent.  相似文献   

7.
Progressive hearing loss is common in the human population, but we have few clues to the molecular basis. Mouse mutants with progressive hearing loss offer valuable insights, and ENU (N-ethyl-N-nitrosourea) mutagenesis is a useful way of generating models. We have characterised a new ENU-induced mouse mutant, Oblivion (allele symbol Obl), showing semi-dominant inheritance of hearing impairment. Obl/+ mutants showed increasing hearing impairment from post-natal day (P)20 to P90, and loss of auditory function was followed by a corresponding base to apex progression of hair cell degeneration. Obl/Obl mutants were small, showed severe vestibular dysfunction by 2 weeks of age, and were completely deaf from birth; sensory hair cells were completely degenerate in the basal turn of the cochlea, although hair cells appeared normal in the apex. We mapped the mutation to Chromosome 6. Mutation analysis of Atp2b2 showed a missense mutation (2630C→T) in exon 15, causing a serine to phenylalanine substitution (S877F) in transmembrane domain 6 of the PMCA2 pump, the resident Ca2+ pump of hair cell stereocilia. Transmembrane domain mutations in these pumps generally are believed to be incompatible with normal targeting of the protein to the plasma membrane. However, analyses of hair cells in cultured utricular maculae of Obl/Obl mice and of the mutant Obl pump in model cells showed that the protein was correctly targeted to the plasma membrane. Biochemical and biophysical characterisation showed that the pump had lost a significant portion of its non-stimulated Ca2+ exporting ability. These findings can explain the progressive loss of auditory function, and indicate the limits in our ability to predict mechanism from sequence alone.  相似文献   

8.
Tight junctions (TJs) are essential components of eukaryotic cells, and serve as paracellular barriers and zippers between adjacent tissues. TJs are critical for normal functioning of the organ of Corti, a part of the inner ear that causes loss of sensorineural hearing when damaged. To investigate the relation between genes involved in TJ function and hereditary loss of sensorineural hearing in the Korean population, we selected the TJP2 and CLDN14 genes as candidates for gene screening of 135 Korean individuals. The TJP2 gene, mutation of which causes autosomal dominant non-syndromic hearing loss (ADNSHL), lies at the DFNA51 locus on chromosome 9. The CLDN14 gene, mutation of which causes autosomal recessive non-syndromic hearing loss (ARNSHL), lies at the DFNB29 locus on chromosome 21. In the present study, we conducted genetic analyses of the TJP2 and CLDN14 genes in 87 unrelated patients with ADNSHL and 48 unrelated patients with either ARNSHL or potentially sporadic hearing loss. We identified two pathogenic variations, c.334G>A (p.A112T) and c.3562A>G (p.T1188A), and ten single nucleotide polymorphisms (SNPs) in the TJP2 gene. We found eight non-pathogenic variations in the CLDN14 gene. These findings indicate that, whereas mutation of the TJP2 gene might cause ADNSHL, CLDN14 is not a major causative gene for ARNSHL in the Korean population studied. Our findings may improve the understanding of the genetic cause of non-syndromic hearing loss in the Korean population.  相似文献   

9.
The mechanotransduction process in hair cells in the inner ear is associated with the influx of calcium from the endolymph. Calcium is exported back to the endolymph via the splice variant w/a of the PMCA2 of the stereocilia membrane. To further investigate the role of the pump, we have identified and characterized a novel ENU-induced mouse mutation, Tommy, in the PMCA2 gene. The mutation causes a non-conservative E629K change in the second intracellular loop of the pump that harbors the active site. Tommy mice show profound hearing impairment from P18, with significant differences in hearing thresholds between wild type and heterozygotes. Expression of mutant PMCA2 in CHO cells shows calcium extrusion impairment; specifically, the long term, non-stimulated calcium extrusion activity of the pump is inhibited. Calcium extrusion was investigated directly in neonatal organotypic cultures of the utricle sensory epithelium in Tommy mice. Confocal imaging combined with flash photolysis of caged calcium showed impairment of calcium export in both Tommy heterozygotes and homozygotes. Immunofluorescence studies of the organ of Corti in homozygous Tommy mice showed a progressive base to apex degeneration of hair cells after P40. Our results on the Tommy mutation along with previously observed interactions between cadherin-23 and PMCA2 mutations in mouse and humans underline the importance of maintaining the appropriate calcium concentrations in the endolymph to control the rigidity of cadherin and ensure the function of interstereocilia links, including tip links, of the stereocilia bundle.  相似文献   

10.
Over 120 loci are known to cause inherited hearing loss in humans. The deafness gene has been identified for only half of these loci. With the aim of identifying some of the remaining deafness genes, we performed an ethylnitrosourea mutagenesis screen for deaf mice. We isolated two mutants with semi-dominant hearing loss, Deaf11 and Deaf13. Both contained causative mutations in Atp2b2, which encodes the plasma membrane calcium ATPase 2. The Atp2b2 Deaf11 mutation leads to a p. I1023S substitution in the tenth transmembrane domain. The Atp2b2 Deaf13 mutation leads to a p. R561S substitution in the catalytic core. Mice homozygous for these mutations display profound hearing loss. Heterozygotes display mild to moderate, progressive hearing loss.  相似文献   

11.
Autosomal recessive nonsyndromic hearing loss (ARNSHL) is a genetically heterogeneous sensorineural disorder, generally manifested with prelingual hearing loss and absence of other clinical manifestations. The aim of this study is to identify the pathogenic gene in a four-generation consanguineous Chinese family with ARNSHL. A novel homozygous variant, c.9316dupC (p.H3106Pfs*2), in the myoxin XVa gene (MYO15A) was identified by exome sequencing and Sanger sequencing. The homozygous MYO15A c.9316dupC variant co-segregated with the phenotypes in the ARNSHL family and was absent in two hundred normal controls. The variant was predicted to interfere with the formation of the Myosin XVa-whirlin-Eps8 complex at the tip of stereocilia, which is indispensable for stereocilia elongation. Our data suggest that the homozygous MYO15A c.9316dupC variant might be the pathogenic mutation, and exome sequencing is a powerful molecular diagnostic strategy for ARNSHL, an extremely heterogeneous disorder. Our findings extend the mutation spectrum of the MYO15A gene and have important implications for genetic counseling for the family.  相似文献   

12.
Xu F  Wang HJ  Ma D 《遗传》2012,34(3):253-259
耳聋是一种常见的人类感觉系统缺陷,新生儿发病率可达1/1000~3/1000。耳蜗感觉神经上皮毛细胞的结构或功能异常可导致耳聋,遗传因素在其中起重要作用。虽然一些与遗传性耳聋相关的基因及染色体位点已经被定位或克隆,仍有很多耳聋的病因尚不清楚。人们发现,除了常见的热点基因突变(GJB2、SLC26A4、线粒体DNA C1494T和A1555G等)外,一些表观遗传学的改变也在耳聋的发生中起重要作用。例如,miR-96突变会导致人和小鼠的渐进性失聪,异常的CpG岛甲基化与一些耳聋综合征的发生有关等。文章着重对表观遗传学在耳聋领域的研究现状和进展进行了综述。  相似文献   

13.
许飞  王慧君  马端 《遗传》2012,34(3):253-259
耳聋是一种常见的人类感觉系统缺陷, 新生儿发病率可达1/1000~3/1000。耳蜗感觉神经上皮毛细胞的结构或功能异常可导致耳聋,遗传因素在其中起重要作用。虽然一些与遗传性耳聋相关的基因及染色体位点已经被定位或克隆, 仍有很多耳聋的病因尚不清楚。人们发现, 除了常见的热点基因突变(GJB2、SLC26A4、线粒体DNA C1494T和A1555G等)外, 一些表观遗传学的改变也在耳聋的发生中起重要作用。例如, miR-96 突变会导致人和小鼠的渐进性失聪, 异常的CpG岛甲基化与一些耳聋综合征的发生有关等。文章着重对表观遗传学在耳聋领域的研究现状和进展进行了综述。  相似文献   

14.
15.
The motor protein myosin IIIA is critical for maintenance of normal hearing. Homozygosity and compound heterozygosity for loss-of-function mutations in MYO3A, which encodes myosin IIIA, are responsible for inherited human progressive hearing loss DFNB30. To further evaluate this hearing loss, we constructed a mouse model, Myo3a KI/KI , that harbors the mutation equivalent to the nonsense allele responsible for the most severe human phenotype. Myo3a KI/KI mice were compared to their wild-type littermates. Myosin IIIA, with a unique N-terminal kinase domain and a C-terminal actin-binding domain, localizes to the tips of stereocilia in wild-type mice but is absent in the mutant. The phenotype of the Myo3a KI/KI mouse parallels the phenotype of human DFNB30. Hearing loss, as measured by auditory brainstem response, is reduced and progresses significantly with age. Vestibular function is normal. Outer hair cells of Myo3a KI/KI mice degenerate with age in a pattern consistent with their progressive hearing loss.  相似文献   

16.
Maintenance of the post-mitotic state in the post-natal mammalian brain is an active process that requires the cyclin-dependent kinase inhibitors (CKIs) p19Ink4d (Ink4d) and p27Kip1 (Kip1). In animals with targeted deletions of both Ink4d and Kip1, terminally differentiated, post-mitotic neurons are observed to re-enter the cell cycle, divide and undergo apoptosis. However, when either Ink4d or Kip1 alone are deleted, the post-mitotic state is maintained, suggesting a redundant role for these genes in mature neurons. In the organ of Corti--the auditory sensory epithelium of mammals--sensory hair cells and supporting cells become post-mitotic during embryogenesis and remain quiescent for the life of the animal. When lost as a result of environmental insult or genetic abnormality, hair cells do not regenerate, and this loss is a common cause of deafness in humans. Here, we report that targeted deletion of Ink4d alone is sufficient to disrupt the maintenance of the post-mitotic state of sensory hair cells in post-natal mice. In Ink4d-/- animals, hair cells are observed to aberrantly re-enter the cell cycle and subsequently undergo apoptosis, resulting in progressive hearing loss. Our results identify a novel mechanism underlying a non-syndromic form of progressive hearing loss in mice.  相似文献   

17.
Progressive sensorineural hearing loss is the most common form of acquired hearing impairment in the human population. It is also highly prevalent in inbred strains of mice, providing an experimental avenue to systematically map genetic risk factors and to dissect the molecular pathways that orchestrate hearing in peripheral sensory hair cells. Therefore, we ascertained hearing function in the inbred long sleep (ILS) and inbred short sleep (ISS) strains. Using auditory-evoked brain stem response (ABR) and distortion product otoacoustic emission (DPOAE) measurements, we found that ISS mice developed a high-frequency hearing loss at twelve weeks of age that progressed to lower frequencies by 26 weeks of age in the presence of normal endocochlear potentials and unremarkable inner ear histology. ILS mice exhibited milder hearing loss, showing elevated thresholds and reduced DPOAEs at the higher frequencies by 26 weeks of age. To map the genetic variants that underlie this hearing loss we computed ABR thresholds of 63 recombinant inbred stains derived from the ISS and ILS founder strains. A single locus was linked to markers associated with ISS alleles on chromosome 10 with a highly significant logarithm of odds (LOD) score of 15.8. The 2-LOD confidence interval spans ∼4 Megabases located at position 54–60 Mb. This locus, termed sensorineural hearing loss 1 (Snhl1), accounts for approximately 82% of the phenotypic variation. In summary, this study identifies a novel hearing loss locus on chromosome 10 and attests to the prevalence and genetic heterogeneity of progressive hearing loss in common mouse strains.  相似文献   

18.
We performed genome-wide homozygosity mapping in a large consanguineous family from Morocco and mapped the autosomal-recessive nonsyndromic hearing loss (ARNSHL) in this family to the DFNB79 locus on chromosome 9q34. By sequencing of 62 positional candidate genes of the critical region, we identified a causative homozygous 11 bp deletion, c.42_52del, in the TPRN gene in all seven affected individuals. The deletion is located in exon 1 and results in a frameshift and premature protein truncation (p.Gly15AlafsX150). Interestingly, the deleted sequence is part of a repetitive and CG-rich motive predicted to be prone to structural aberrations during crossover formation. We identified another family with progressive ARNSHL linked to this locus, whose affected members were shown to carry a causative 1 bp deletion (c.1347delG) in exon 1 of TPRN. The function of the encoded protein, taperin, is unknown; yet, partial homology to the actin-caping protein phostensin suggests a role in actin dynamics.  相似文献   

19.
In China, approximately 30,000 babies are born with hearing impairment each year. However, the molecular factors causing congenital hearing impairment in the Xiamen area of Fujian province have not been evaluated. To provide accurate genetic testing and counseling in the Xiamen area, we investigated the molecular etiology of non-syndromic deafness in a deaf population from Xiamen. Unrelated students with hearing impairment (n = 155) who attended Xiamen Special Education School in Fujian Province were recruited for this study. Three common deafness-related genes, GJB2, SLC26A4, and mtDNA12SrRNA, were analyzed using all-exon sequencing. GJB2 mutations were detected in 27.1% (42/155) of the entire cohort. The non-syndromic hearing loss (NSHL) hotspot mutations c.109G>A (p.V37I) and c.235delC were found in this population, whereas the Caucasian hotspot mutation c.35delG was not. The allelic frequency of the c.109G>A mutation was 9.03% (28/310), slightly higher than that of c.235delC (8.39%, 26/310), which is the most common GJB2 mutation in most areas of China. The allelic frequency of the c.109G>A mutation was significantly higher in this Xiamen’s deaf population than that in previously reported cohorts (P = 0.00). The SLC26A4 mutations were found in 16.77% (26/155) of this cohort. The most common pathogenic allele was c.IVS7-2A>G (6.13%, 19/310), and the second most common was the c.1079C>T (p.A360V) mutation (1.94%, 6/310) which has rarely been reported as a hotspot mutation in other studies. The mutation rate of mtDNA12SrRNA in this group was 3.87% (6/155), all being the m.A1555G mutation. These findings show the specificity of the common deaf gene-mutation spectrum in this area. According to this study, there were specific hotspot mutations in Xiamen deaf patients. Comprehensive sequencing analysis of the three common deaf genes can help portray the mutation spectrum and develop optimal testing strategies for deaf patients in this area.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号