首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

Nonsyndromic enlargement of vestibular aqueduct (NSEVA) is an autosomal recessive hearing loss disorder that is associated with mutations in SLC26A4. However, not all patients with NSEVA carry biallelic mutations in SLC26A4. A recent study proposed that single mutations in both SLC26A4 and KCNJ10 lead to digenic NSEVA. We examined whether KCNJ10 excert a role in the pathogenesis of NSEVA in Chinese patients.

Methods

SLC26A4 was sequenced in 1056 Chinese patients with NSEVA. KCNJ10 was screened in 131 patients who lacked mutations in either one or both alleles of SLC26A4. Additionally, KCNJ10 was screened in 840 controls, including 563 patients diagnosed with NSEVA who carried biallelic SLC26A4 mutations, 48 patients with nonsyndromic hearing loss due to inner ear malformations that did not involve enlargement of the vestibular aqueduct (EVA), 96 patients with conductive hearing loss due to various causes, and 133 normal-hearing individuals with no family history of hereditary hearing loss.

Results

925 NSEVA patients were found carrying two-allele pathogenic SLC26A4 mutations. The most frequently detected KCNJ10 mutation was c.812G>A (p.R271H). Compared with the normal-hearing control subjects, the occurrence rate of c.812G>A in NSEVA patients with lacking mutations in one or both alleles of SLC26A4 had no significant difference(1.53% vs. 5.30%, χ2 = 2.798, p = 0.172), which suggested that it is probably a nonpathogenic benign variant. KCNJ10 c.1042C>T (p.R348C), the reported EVA-related mutation, was not found in patients with NSEVA who lacked mutations in either one or both alleles of SLC26A4. Furthermore, the normal-hearing parents of patients with NSEVA having two SLC26A4 mutations carried the KCNJ10 c.1042C>T or c.812G>A mutation and a SLC26A4 pathogenic mutation.

Conclusion

SLC26A4 is the major genetic cause in Chinese NSEVA patients, accounting for 87.59%. KCNJ10 may not be a contributor to NSEVA in Chinese population. Other genetic or environmental factors are possibly play a role in the etiology of Chinese EVA patients with zero or monoallelic SLC26A4 mutation.  相似文献   

3.
Pendred syndrome is an autosomal recessive inherited disorder characterized by a combination of sensorineural hearing impairment and euthyroid goiter; its clinical manifestation in children is hardly distinguishable from nonsyndromic hearing loss. Pendred syndrome is one of the most frequent types of syndromic hearing loss. Hearing impairment is accompanied by abnormal development of the bony labyrinth—enlarged vestibular aqueduct (EVA) and occasionally combined with Mondini dysplasia. Mutations in the SLC26A4 gene, which encodes the pendrin protein, are responsible for both Pendred syndrome and for allelic disorder (nonsyndromic enlarged vestibular aqueduct). The present study for the first time conducted molecular genetic analysis in 20 Russian patients with Pendred syndrome, EVA and/or Mondini dysplasia. As a result, six pathogenic mutations in the SLC26A4 gene were revealed in four patients. The mutation c.222G>T (p.Trp74Cys) was detected for the first time. Mutations were found in patients with Pendred syndrome and nonsyndromic EVA with or without Mondini dysplasia. Mutations were not detected in patients with isolated Mondini dysplasia. One proband with clinical diagnosis Pendred syndrome was homozygous for the c.35delG mutation in the GJB2 gene. The absence of frequent mutations, including well-known ones or “hot” exons in the SLC26A4 gene, was reported. Therefore, the optimal method to search for mutations in the SLC26A4 gene in Russian patients is Sanger sequencing of all exons and exon-intron boundaries in the SLC26A4 gene.  相似文献   

4.
B Sagong  JH Seok  TJ Kwon  UK Kim  SH Lee  KY Lee 《Gene》2012,508(1):135-139
Pendred syndrome (PS) is an autosomal recessive disorder characterized by congenital bilateral sensorineural hearing loss, goiter, and incomplete iodide organification. Patients with PS also have structural anomalies of the inner ear such as enlarged vestibular aqueducts (EVA) and Mondini's malformation. The goiter, which is a major clinical manifestation of PS, usually develops around adolescence. PS is caused by biallelic mutations of the SLC26A4 gene, while nonsyndromic bilateral EVA is associated with zero or one SLC26A4 mutant allele. We report here a Korean family including a young female with PS who had goiter and progressive, fluctuating sensorineural hearing loss that could be partially recovered by oral steroid treatment. Genetic investigation revealed compound heterozygous mutations for p.R677AfsX11, a novel frameshift mutation, and p.H723R in the SLC26A4 gene. Our findings provide detailed information regarding the distribution of mutant alleles for PS and may serve as a foundation for studies to comprehend the genetic portion of syndromic hearing loss.  相似文献   

5.
Mutations in SLC26A4 cause either syndromic or nonsyndromic hearing loss. We identified a link between hearing loss and DFNB4 in 3 of the 50 families participating in this study. Sequencing analysis revealed two SLC26A4 mutations, p.V239D and p.S57X, in affected members of the 3 families. These mutations have been previously reported in deaf individuals from the subcontinent, all of whom manifested profound deafness. The patients investigated in our study exhibited moderate to severe hearing loss. Our results show that inactivating SLC26A4 mutations that cause profound deafness can also be involved in the etiology of moderate to severe hearing loss. The type of mutation cannot predict the severity of the hearing loss in all cases, and there may be additional epistatic interactions that could modify the phenotype.  相似文献   

6.
Enlargement of the vestibular aqueduct (EVA) is the most common inner ear anomaly detected in ears of children with sensorineural hearing loss. Pendred syndrome (PS) is an autosomal recessive disorder characterized by bilateral sensorineural hearing loss with EVA and an iodine organification defect that can lead to thyroid goiter. Pendred syndrome is caused by mutations of the SLC26A4 gene. SLC26A4 mutations may also be identified in some patients with nonsyndromic EVA (NSEVA). The presence of two mutant alleles of SLC26A4 is correlated with bilateral EVA and Pendred syndrome, whereas unilateral EVA and NSEVA are correlated with one (M1) or zero (M0) mutant alleles of SLC26A4. Thyroid gland enlargement (goiter) appears to be primarily dependent on the presence of two mutant alleles of SLC26A4 in pediatric patients, but not in older patients. In M1 families, EVA may be associated with a second, undetected SLC26A4 mutation or epigenetic modifications. In M0 families, there is probably etiologic heterogeneity that includes causes other than, or in addition to, monogenic inheritance.  相似文献   

7.
Mutations in the SLC26A4 gene are a common cause of human hereditary hearing impairment worldwide. Previous studies have demonstrated that different SLC26A4 mutations have different pathogenetic mechanisms. By using a genotype-driven approach, we established a knock-in mouse model (i.e., Slc26a4tm2Dontuh/tm2Dontuh mice) homozygous for the common p.H723R mutation in the East Asian population. To verify the pathogenicity of the p.H723R allele in mice, we further generated mice with compound heterozygous mutations (i.e., Slc26a4tm1Dontuh/tm2Dontuh) by intercrossing Slc26a4+/tm2Dontuh mice with Slc26a4tm1Dontuh/tm1Dontuh mice, which segregated the c.919-2A>G mutation with an abolished Slc26a4 function. Mice were then subjected to audiologic assessments, a battery of vestibular evaluations, inner ear morphological studies, and noise exposure experiments. The results were unexpected; both Slc26a4tm2Dontuh/tm2Dontuh and Slc26a4tm1Dontuh/tm2Dontuh mice showed normal audiovestibular phenotypes and inner ear morphology, and they did not show significantly higher shifts in hearing thresholds after noise exposure than the wild-type mice. The results indicated not only the p.H723R allele was non-pathogenic in mice, but also a single p.H723R allele was sufficient to maintain normal inner ear physiology in heterozygous compound mice. There might be discrepancies in the pathogenicity of specific SLC26A4 mutations in humans and mice; therefore, precautions should be taken when extrapolating the results of animal studies to humans.  相似文献   

8.
Mutations of SLC26A4 are a common cause of human hearing loss associated with enlargement of the vestibular aqueduct. SLC26A4 encodes pendrin, an anion exchanger expressed in a variety of epithelial cells in the cochlea, the vestibular labyrinth and the endolymphatic sac. Slc26a4 Δ/Δ mice are devoid of pendrin and develop a severe enlargement of the membranous labyrinth, fail to acquire hearing and balance, and thereby provide a model for the human phenotype. Here, we generated a transgenic mouse line that expresses human SLC26A4 controlled by the promoter of ATP6V1B1. Crossing this transgene into the Slc26a4 Δ/Δ line restored protein expression of pendrin in the endolymphatic sac without inducing detectable expression in the cochlea or the vestibular sensory organs. The transgene prevented abnormal enlargement of the membranous labyrinth, restored a normal endocochlear potential, normal pH gradients between endolymph and perilymph in the cochlea, normal otoconia formation in the vestibular labyrinth and normal sensory functions of hearing and balance. Our study demonstrates that restoration of pendrin to the endolymphatic sac is sufficient to restore normal inner ear function. This finding in conjunction with our previous report that pendrin expression is required for embryonic development but not for the maintenance of hearing opens the prospect that a spatially and temporally limited therapy will restore normal hearing in human patients carrying a variety of mutations of SLC26A4.  相似文献   

9.
Pendred syndrome (PS) and non-syndromic enlarged vestibular aqueduct (EVA) are two recessive disorders characterized by the association of sensorineural hearing loss (SNHL) with inner ear malformations that range from isolated EVA to Mondini Dysplasia, a complex malformation that includes a cochlear dysplasia and EVA. Mutations in the SLC26A4 gene, coding for the protein pendrin, have been implicated in the pathophysiology of both disorders. In order to determine whether SLC26A4 genotypes can be correlated to the complexity and severity of the phenotypes, we ascertained 1,506 deaf patients. Inner ear abnormalities were present in 474 patients (32%). Mutation screening of SLC26A4 detected two mutations in 16% of patients, one mutation in 19% of patients and zero mutation in 65% of patients. When the distribution of SLC26A4 genotypes was compared across phenotypes, a statistically significant difference was found between PS patients and non-syndromic EVA–Mondini patients (P = 0.005), as well as between EVA patients and Mondini patients (P = 0.0003). There was a correlation between phenotypic complexity of inner ear malformations and genetic heterogeneity—PS patients have the most severe phenotype and the most homogeneous etiology while EVA patients have the least severe phenotype and the most heterogeneous etiology. For all patients, variability in the degree of hearing loss is seen across genotypes implicating other genetic and/or environmental factors in the pathogenesis of the PS–Mondini–EVA disease spectrum.  相似文献   

10.
Several members of the SLC26 gene family have highly-restricted expression patterns in the auditory and vestibular periphery and mutations in mice of at least two of these (SLC26A4 and SLC26A5) lead to deficits in hearing and/or balance. A previous report pointed to SLC26A7 as a candidate gene important for cochlear function. In the present study, inner ears were assayed by immunostaining for Slc26a7 in neonatal and adult mice. Slc26a7 was detected in the basolateral membrane of Reissner’s membrane epithelial cells but not neighboring cells, with an onset of expression at P5; gene knockout resulted in the absence of protein expression in Reissner’s membrane. Whole-cell patch clamp recordings revealed anion currents and conductances that were elevated for NO3 over Cl and inhibited by I and NPPB. Elevated NO3 currents were absent in Slc26a7 knockout mice. There were, however, no major changes to hearing (auditory brainstem response) of knockout mice during early adult life under constitutive and noise exposure conditions. The lack of Slc26a7 protein expression found in the wild-type vestibular labyrinth was consistent with the observation of normal balance. We conclude that SLC26A7 participates in Cl transport in Reissner’s membrane epithelial cells, but that either other anion pathways, such as ClC-2, possibly substitute satisfactorily under the conditions tested or that Cl conductance in these cells is not critical to cochlear function. The involvement of SLC26A7 in cellular pH regulation in other epithelial cells leaves open the possibility that SLC26A7 is needed in Reissner’s membrane cells during local perturbations of pH.  相似文献   

11.
Mutations of SLC26A4 are among the most prevalent causes of hereditary deafness. Deafness in the corresponding mouse model, Slc26a4−/−, results from an abnormally enlarged cochlear lumen. The goal of this study was to determine whether the cochlear enlargement originates with defective cochlear fluid transport or with a malfunction of fluid transport in the connected compartments, which are the vestibular labyrinth and the endolymphatic sac. Embryonic inner ears from Slc26a4+/− and Slc26a4−/− mice were examined by confocal microscopy ex vivo or after 2 days of organ culture. Culture allowed observations of intact, ligated or partially resected inner ears. Cochlear lumen formation was found to begin at the base of the cochlea between embryonic day (E) 13.5 and 14.5. Enlargement was immediately evident in Slc26a4−/− compared to Slc26a4+/− mice. In Slc26a4+/− and Slc26a4−/− mice, separation of the cochlea from the vestibular labyrinth by ligation at E14.5 resulted in a reduced cochlear lumen. Resection of the endolymphatic sacs at E14.5 led to an enlarged cochlear lumen in Slc26a4+/− mice but caused no further enlargement of the already enlarged cochlear lumen in Slc26a4−/− mice. Ligation or resection performed later, at E17.5, did not alter the cochlea lumen. In conclusion, the data suggest that cochlear lumen formation is initiated by fluid secretion in the vestibular labyrinth and temporarily controlled by fluid absorption in the endolymphatic sac. Failure of fluid absorption in the endolymphatic sac due to lack of Slc26a4 expression appears to initiate cochlear enlargement in mice, and possibly humans, lacking functional Slc26a4 expression.  相似文献   

12.
A gene causing autosomal-recessive, nonsyndromic hearing loss, DFNB39, was previously mapped to an 18 Mb interval on chromosome 7q11.22-q21.12. We mapped an additional 40 consanguineous families segregating nonsyndromic hearing loss to the DFNB39 locus and refined the obligate interval to 1.2 Mb. The coding regions of all genes in this interval were sequenced, and no missense, nonsense, or frameshift mutations were found. We sequenced the noncoding sequences of genes, as well as noncoding genes, and found three mutations clustered in intron 4 and exon 5 in the hepatocyte growth factor gene (HGF). Two intron 4 deletions occur in a highly conserved sequence that is part of the 3′ untranslated region of a previously undescribed short isoform of HGF. The third mutation is a silent substitution, and we demonstrate that it affects splicing in vitro. HGF is involved in a wide variety of signaling pathways in many different tissues, yet these putative regulatory mutations cause a surprisingly specific phenotype, which is nonsydromic hearing loss. Two mouse models of Hgf dysregulation, one in which an Hgf transgene is ubiquitously overexpressed and the other a conditional knockout that deletes Hgf from a limited number of tissues, including the cochlea, result in deafness. Overexpression of HGF is associated with progressive degeneration of outer hair cells in the cochlea, whereas cochlear deletion of Hgf is associated with more general dysplasia.  相似文献   

13.
Recent advances in genome research have enabled the identification of new genomic variations that are associated with type 2 diabetes mellitus (T2DM). Via fine mapping of SNPs in a candidate region of chromosome 21q, the current study identifies potassium inwardly-rectifying channel, subfamily J, member 15 (KCNJ15) as a new T2DM susceptibility gene. KCNJ15 is expressed in the β cell of the pancreas, and a synonymous SNP, rs3746876, in exon 4 (C566T) of this gene, with T allele frequency among control subjects of 3.1%, showed a significant association with T2DM affecting lean individuals in three independent Japanese sample sets (p = 2.5 × 10−7, odds ratio [OR] = 2.54, 95% confidence interval [CI] = 1.76–3.67) and with unstratified T2DM (p = 6.7 × 10−6, OR = 1.76, 95% CI = 1.37–2.25). The diabetes risk allele frequency was, however, very low among Europeans in whom no association between this variant and T2DM could be shown. Functional analysis in human embryonic kidney 293 cells demonstrated that the risk allele of the synonymous SNP in exon 4 increased KCNJ15 expression via increased mRNA stability, which resulted in the higher expression of protein as compared to that of the nonrisk allele. We also showed that KCNJ15 is expressed in human pancreatic β cells. In conclusion, we demonstrated a significant association between a synonymous variant in KCNJ15 and T2DM in lean Japanese patients with T2DM, suggesting that KCNJ15 is a previously unreported susceptibility gene for T2DM among Asians.  相似文献   

14.
15.
Yuan Y  Zhang X  Huang S  Zuo L  Zhang G  Song Y  Wang G  Wang H  Huang D  Han D  Dai P 《PloS one》2012,7(2):e30720

Background

Thirty thousand infants are born every year with congenital hearing impairment in mainland China. Racial and regional factors are important in clinical diagnosis of genetic deafness. However, molecular etiology of hearing impairment in the Tibetan Chinese population living in the Tibetan Plateau has not been investigated. To provide appropriate genetic testing and counseling to Tibetan families, we investigated molecular etiology of nonsyndromic deafness in this population.

Methods

A total of 114 unrelated deaf Tibetan children from the Tibet Autonomous Region were enrolled. Five prominent deafness-related genes, GJB2, SLC26A4, GJB6, POU3F4, and mtDNA 12S rRNA, were analyzed. Inner ear development was evaluated by temporal CT. A total of 106 Tibetan hearing normal individuals were included as genetic controls. For radiological comparison, 120 patients, mainly of Han ethnicity, with sensorineural hearing loss were analyzed by temporal CT.

Results

None of the Tibetan patients carried diallelic GJB2 or SLC26A4 mutations. Two patients with a history of aminoglycoside usage carried homogeneous mtDNA 12S rRNA A1555G mutation. Two controls were homozygous for 12S rRNA A1555G. There were no mutations in GJB6 or POU3F4. A diagnosis of inner ear malformation was made in 20.18% of the Tibetan patients and 21.67% of the Han deaf group. Enlarged vestibular aqueduct, the most common inner ear deformity, was not found in theTibetan patients, but was seen in 18.33% of the Han patients. Common molecular etiologies, GJB2 and SLC26A4 mutations, were rare in the Tibetan Chinese deaf population.

Conclusion

The mutation spectrum of hearing loss differs significantly between Chinese Tibetan patients and Han patients. The incidence of inner ear malformation in Tibetans is almost as high as that in Han deaf patients, but the types of malformation vary greatly. Hypoxia and special environment in plateau may be one cause of developmental inner ear deformity in this population.  相似文献   

16.
This paper presents the current views, regarding the pathomechanisms, which lead to the development of pathological symptoms in the enlargement of the vestibular aqueduct syndrome (EVAS) and the Pendred syndrome (PS). Associated phenotypes have been discussed and an attempt has been undertaken to correlate them with a corresponding genotype. Mutations of SLC26A4 gene are one of the factors, which are at the base of congenital hearing losses. Inherited hearing loss occurs in these cases either as an isolated phenomenon with anatomical anomalies of the labyrinth in the background (EVAS) or with endocrine disorders (PS). The official name of SLC26A4 gene is "solute carrier family 26, member 4". Pendrin, the product of its expression, transports iodine beyond thyroid follicular cells, where it is linked with thyroglobulin and, then, used in hormone synthesis. Abnormal expression of SLC26A4 gene results in disturbance of iodine organification. In the internal ear, pendrin transports bicarbonates to the endolymph, taking in this way an active part in pH control of the endolymph and providing proper functioning of KCNJ10 potassium channels and TRP5 calcium channels. Disorders of homeostasis in labyrinth fluids are responsible for abnormalities of its structure, such as enlargement of the vestibular aqueduct and of the endolymph sac. At present, the Human Gene Mutations database provides 124 recessive mutations of SLC26A4 gene. In EVAS and PS, two missense mutations are most frequently observed: L236P and T416P, as well as the mutation, regarding abnormal splicing process, i.e., IVS8+1G-A, in a total of 55% of the patients with recognised mutation of SLC26A4 gene; the remaining 45% of changes of this gene are unique mutations.  相似文献   

17.
Thyroid hormone is essential for inner ear development and is required for auditory system maturation. Human mutations in SLC26A4 lead to a syndromic form of deafness with enlargement of the thyroid gland (Pendred syndrome) and non-syndromic deafness (DFNB4). We describe mice with an Slc26a4 mutation, Slc26a4 loop/loop , which are profoundly deaf but show a normal sized thyroid gland, mimicking non-syndromic clinical signs. Histological analysis of the thyroid gland revealed defective morphology, with a majority of atrophic microfollicles, while measurable thyroid hormone in blood serum was within the normal range. Characterization of the inner ear showed a spectrum of morphological and molecular defects consistent with inner ear pathology, as seen in hypothyroidism or disrupted thyroid hormone action. The pathological inner ear hallmarks included thicker tectorial membrane with reduced β-tectorin protein expression, the absence of BK channel expression of inner hair cells, and reduced inner ear bone calcification. Our study demonstrates that deafness in Slc26a4 loop/loop mice correlates with thyroid pathology, postulating that sub-clinical thyroid morphological defects may be present in some DFNB4 individuals with a normal sized thyroid gland. We propose that insufficient availability of thyroid hormone during inner ear development plays an important role in the mechanism underlying deafness as a result of SLC26A4 mutations.  相似文献   

18.
Hearing loss (HL) is a congenital disease with a high prevalence, and patients with hearing loss need early diagnosis for treatment and prevention. The GJB2, MT-RNR1, and SLC26A4 genes have been reported as common causative genes of hearing loss in the Korean population and some mutations of these genes are the most common mutations associated with hearing loss. Accordingly, we developed a method for the simultaneous detection of seven mutations (c.235delC of GJB2, c.439A>G, c.919-2A>G, c.1149+3A>G, c.1229C>T, c.2168A>G of SLC26A4, and m.1555A>G of the MT-RNR1 gene) using multiplex SNaPshot minisequencing to enable rapid diagnosis of hereditary hearing loss. This method was confirmed in patients with hearing loss and used for genetic diagnosis of controls with normal hearing and neonates. We found that 4.06% of individuals with normal hearing and 4.32% of neonates were heterozygous carriers. In addition, we detected that an individual is heterozygous for two different mutations of GJB2 and SLC26A4 gene, respectively and one normal hearing showing the heteroplasmy of m.1555A>G. These genotypes corresponded to those determined by direct sequencing. Overall, we successfully developed a robust and cost-effective diagnosis method that detects common causative mutations of hearing loss in the Korean population. This method will be possible to detect up to 40% causative mutations associated with prelingual HL in the Korean population and serve as a useful genetic technique for diagnosis of hearing loss for patients, carriers, neonates, and fetuses.  相似文献   

19.
20.
SLC26 proteins function as anion exchangers, channels, and sensors. Previous cellular studies have shown that Slc26a3 and Slc26a6 interact with the R-region of the cystic fibrosis transmembrane conductance regulator (CFTR), (R)CFTR, via the Slc26-STAS (sulfate transporter anti-sigma) domain, resulting in mutual transport activation. We recently showed that Slc26a9 has both nCl-HCO3 exchanger and Cl channel function. In this study, we show that the purified STAS domain of Slc26a9 (a9STAS) binds purified (R)CFTR. When Slc26a9 and (R)CFTR fragments are co-expressed in Xenopus oocytes, both Slc26a9-mediated nCl-HCO3 exchange and Cl currents are almost fully inhibited. Deletion of the Slc26a9 STAS domain (a9-ΔSTAS) virtually eliminated the Cl currents with only a modest affect on nCl-HCO3 exchange activity. Co-expression of a9-ΔSTAS and the (R)CFTR fragment did not alter the residual a9-ΔSTAS function. Replacing the Slc26a9 STAS domain with the Slc26a6 STAS domain (a6-a9-a6) does not change Slc26a9 function and is no longer inhibited by (R)CFTR. These data indicate that the Slc26a9-STAS domain, like other Slc26-STAS domains, binds CFTR in the R-region. However, unlike previously reported data, this binding interaction inhibits Slc26a9 ion transport activity. These results imply that Slc26-STAS domains may all interact with (R)CFTR but that the physiological outcome is specific to differing Slc26 proteins, allowing for dynamic and acute fine tuning of ion transport for various epithelia.Slc26 genes and proteins have attracted the attention of physiologists and geneticists. Why? Slc26a1 (Sat-1) was characterized as a Na+-independent SO42− transporter (1). Given the transport characteristics of the founding member of the gene family, Slc26 proteins were assumed to be sulfate transporters. Disease phenotypes, clone characterization, and family additions demonstrate that the Slc26 proteins are anion transporters or channels (24). These proteins have varied tissue expression patterns. At one extreme, Slc26a5 in mammals is found in the hair cells of the inner ear (5), whereas Slc26a2 (DTDST) is virtually ubiquitous in epithelial tissues (2).Several Slc26 proteins are found in the epithelia of the lung, intestine, stomach, pancreas, and kidney, usually in apical membranes. Interestingly these are also tissues and membranes in which the cystic fibrosis transmembrane conductance regulator (CFTR)5 has been found functionally or by immunohistochemistry. Ko and co-workers (68) examined the distribution of Slc26a3 and Slc26a6 in HCO3 secretory epithelia, and asked if an interaction might occur between these Slc26 proteins and CFTR. In particular, these studies indicate that in expression systems, there is a reciprocal-stimulatory interaction of the STAS (sulfate transporter anti-sigma) domains of Slc26a3 and Slc26a6 with the regulatory region (R-region) of CFTR. These investigators hypothesized that this stimulatory interaction could account for the differences in pancreatic insufficiency and sufficiency observed in cystic fibrosis patients. Nevertheless, knock-out Slc26a6 mouse studies reveal more complicated cell and tissue physiology (see “Discussion”).Slc26a9 has been reported to be a Cl-HCO3 exchanger (9, 10) or a large Cl conductance (3, 11, 12). Loriol and co-workers (12) indicated that SLC26A9 has a Cl conductance that may be stimulated by HCO3. Two other groups have indicated that the Cl conductance is not affected by the presence of HCO3 (10, 11). We have recently demonstrated that Slc26a9 functions as both an electrogenic nCl-HCO3 exchanger and a Cl channel (10). Dorwart and colleagues (11) found that WNK kinases inhibited the SLC26A9 Cl conductance but that this effect was independent of kinase activity. One group has a preliminary report indicating that WNK3 decreased Cl uptake, whereas WNK4 increased Cl uptake via Slc26a9 expressed in Xenopus oocytes (13).Slc26a9 and CFTR are also co-expressed in several tissues. Slc26a9 protein has been localized to epithelia of the stomach and lung (9, 10, 14), although mRNA is also detectable in brain, heart, kidney, small intestine, thymus, and ovary (10). The R-region of CFTR was previously shown to increase the activity of Slc26a3 and Slc26a6 by interaction with STAS domains (6, 15, 16). Because Slc26a9 displays several different modes of ion transport, we asked if the R-region of CFTR would also increase the activity of Slc26a9. Our results indicate that the R-region of CFTR does interact with the STAS domain of Slc26a9. However, in the case of Slc26a9 this apparently similar interaction results in inhibition of Slc26a9 ion transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号