首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spinal muscular atrophies (SMAs) are a genetically and clinically heterogeneous group of disorders characterized by degeneration and loss of anterior horn cells in the spinal cord, leading to muscle weakness and atrophy. Spinal muscular atrophy with pontocerebellar hypoplasia (SMA-PCH, also known as pontocerebellar hypoplasia type 1 [PCH1]) is one of the rare infantile SMA variants that include additional clinical manifestations, and its genetic basis is unknown. We used a homozygosity mapping and positional cloning approach in a consanguineous family of Ashkenazi Jewish origin and identified a nonsense mutation in the vaccinia-related kinase 1 gene (VRK1) as a cause of SMA-PCH. VRK1, one of three members of the mammalian VRK family, is a serine/threonine kinase that phosphorylates p53 and CREB and is essential for nuclear envelope formation. Its identification as a gene involved in SMA-PCH implies new roles for the VRK proteins in neuronal development and maintenance and suggests the VRK genes as candidates for related phenotypes.  相似文献   

2.
3.
Spinal muscular atrophy (SMA) is a common and lethal autosomal recessive neurodegenerative disorder, which is caused by mutations of the survival motor neuron 1 (SMN1) gene. Additionally, the phenotype is modified by several genes nearby SMN1 in the 5q13 region. In this study, we analyzed mutations in SMN1 and quantified the modifying genes, including SMN2, NAIP, GTF2H2, and H4F5 by polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP), multiplex ligation-dependent probe amplification (MLPA), TA cloning, allele-specific long-range PCR, and Sanger sequencing in 157 SMA patients. Most SMA patients (94.90%) possessed a homozygous SMN1 deletion, while 10 patients demonstrated only the absence of exon 7, but the presence of exon 8. Two missense mutations (c.689 C > T and c.844 C > T) were identified in 2 patients who both carried a single copy of SMN1. We found inverse correlations between SMN2, the NAIP copy number, and the clinical severity of the disease. Furthermore, 7 severe type I patients possessed large-scale deletions, including SMN1, NAIP, and GTF2H2. We conclude that SMN1 gene conversion, SMN1 subtle mutations, SMN2 copy number, and the extent of deletion in the 5q13 region should all be considered in the genotype–phenotype analysis of SMA.  相似文献   

4.
5.
The genetic map in the region of human chromosome 5 that harbors the gene for autosomal recessive forms of spinal muscular atrophy (SMA) has been refined by a multilocus linkage study in 50 SMA-segregating families. Among six markers spanning 8 cM for combined sexes, four were shown to be tightly linked to the SMA locus. Multipoint linkage analysis was used to establish the best estimate of the SMA gene location. Our data suggest that the most likely location for the SMA locus is between blocks AFM114ye7 (D5S465)/EF5.15 (D5S125) and MAP-1B/JK53 (D5S112) at a sex-combined genetic distance of 2.4 and 1.7 cM, respectively. Thus the SMA gene lies in the 4-cM region between these two blocks. This information is of primary importance for designing strategies for isolating the SMA gene.  相似文献   

6.
Humans carry two nearly identical copies of Survival Motor Neuron gene: SMN1 and SMN2. Loss of SMN1 leads to spinal muscular atrophy (SMA), the most frequent genetic cause of infant mortality. While SMN2 cannot compensate for the loss of SMN1 due to predominant skipping of exon 7, correction of SMN2 exon 7 splicing holds the promise of a cure for SMA. Previously, we used cell-based models coupled with a multi-exon-skipping detection assay (MESDA) to demonstrate the vulnerability of SMN2 exons to aberrant splicing under the conditions of oxidative stress (OS). Here we employ a transgenic mouse model and MESDA to examine the OS-induced splicing regulation of SMN2 exons. We induced OS using paraquat that is known to trigger production of reactive oxygen species and cause mitochondrial dysfunction. We show an overwhelming co-skipping of SMN2 exon 5 and exon 7 under OS in all tissues except testis. We also show that OS increases skipping of SMN2 exon 3 in all tissues except testis. We uncover several new SMN2 splice isoforms expressed at elevated levels under the conditions of OS. We analyze cis-elements and transacting factors to demonstrate the diversity of mechanisms for splicing misregulation under OS. Our results of proteome analysis reveal downregulation of hnRNP H as one of the potential consequences of OS in brain. Our findings suggest SMN2 as a sensor of OS with implications to SMA and other diseases impacted by low levels of SMN protein.  相似文献   

7.

Objectives

Spinal Muscular Atrophy (SMA) presents challenges in (i) monitoring disease activity and predicting progression, (ii) designing trials that allow rapid assessment of candidate therapies, and (iii) understanding molecular causes and consequences of the disease. Validated biomarkers of SMA motor and non-motor function would offer utility in addressing these challenges. Our objectives were (i) to discover additional markers from the Biomarkers for SMA (BforSMA) study using an immunoassay platform, and (ii) to validate the putative biomarkers in an independent cohort of SMA patients collected from a multi-site natural history study (NHS).

Methods

BforSMA study plasma samples (N = 129) were analyzed by immunoassay to identify new analytes correlating to SMA motor function. These immunoassays included the strongest candidate biomarkers identified previously by chromatography. We selected 35 biomarkers to validate in an independent cohort SMA type 1, 2, and 3 samples (N = 158) from an SMA NHS. The putative biomarkers were tested for association to multiple motor scales and to pulmonary function, neurophysiology, strength, and quality of life measures. We implemented a Tobit model to predict SMA motor function scores.

Results

12 of the 35 putative SMA biomarkers were significantly associated (p<0.05) with motor function, with a 13th analyte being nearly significant. Several other analytes associated with non-motor SMA outcome measures. From these 35 biomarkers, 27 analytes were selected for inclusion in a commercial panel (SMA-MAP) for association with motor and other functional measures.

Conclusions

Discovery and validation using independent cohorts yielded a set of SMA biomarkers significantly associated with motor function and other measures of SMA disease activity. A commercial SMA-MAP biomarker panel was generated for further testing in other SMA collections and interventional trials. Future work includes evaluating the panel in other neuromuscular diseases, for pharmacodynamic responsiveness to experimental SMA therapies, and for predicting functional changes over time in SMA patients.  相似文献   

8.
Emery-Dreifuss muscular dystrophy (EDMD) is a rare disorder characterized by early joint contractures, muscular dystrophy, and cardiac involvement with conduction defects and arrhythmias. So far, only 35% of EDMD cases are genetically elucidated and associated with EMD or LMNA gene mutations, suggesting the existence of additional major genes. By whole-genome scan, we identified linkage to the Xq26.3 locus containing the FHL1 gene in three informative families belonging to our EMD- and LMNA-negative cohort. Analysis of the FHL1 gene identified seven mutations, in the distal exons of FHL1 in these families, three additional families, and one isolated case, which differently affect the three FHL1 protein isoforms: two missense mutations affecting highly conserved cysteines, one abolishing the termination codon, and four out-of-frame insertions or deletions. The predominant phenotype was characterized by myopathy with scapulo-peroneal and/or axial distribution, as well as joint contractures, and associated with a peculiar cardiac disease characterized by conduction defects, arrhythmias, and hypertrophic cardiomyopathy in all index cases of the seven families. Heterozygous female carriers were either asymptomatic or had cardiac disease and/or mild myopathy. Interestingly, four of the FHL1-mutated male relatives had isolated cardiac disease, and an overt hypertrophic cardiomyopathy was present in two. Expression and functional studies demonstrated that the FHL1 proteins were severely reduced in all tested patients and that this was associated with a severe delay in myotube formation in the two patients for whom myoblasts were available. In conclusion, FHL1 should be considered as a gene associated with the X-linked EDMD phenotype, as well as with hypertrophic cardiomyopathy.  相似文献   

9.
10.
Spinal muscular atrophy (SMA) is a monogenic neurodegenerative disorder subdivided into four different types. Whole genome methylation analysis revealed 40 CpG sites associated with genes that are significantly differentially methylated between SMA patients and healthy individuals of the same age. To investigate the contribution of methylation changes to SMA severity, we compared the methylation level of found CpG sites, designed as “targets”, as well as the nearest CpG sites in regulatory regions of ARHGAP22, CDK2AP1, CHML, NCOR2, SLC23A2 and RPL9 in three groups of SMA patients. Of notable interest, compared to type I SMA male patients, the methylation level of a target CpG site and one nearby CpG site belonging to the 5’UTR of SLC23A2 were significantly hypomethylated 19–22% in type III-IV patients. In contrast to type I SMA male patients, type III-IV patients demonstrated a 16% decrease in the methylation levels of a target CpG site, belonging to the 5’UTR of NCOR2. To conclude, this study validates the data of our previous study and confirms significant methylation changes in the SLC23A2 and NCOR2 regulatory regions correlates with SMA severity.  相似文献   

11.
Dominant congenital spinal muscular atrophy (DCSMA) is a disorder of developing anterior horn cells and shows lower-limb predominance and clinical overlap with hereditary spastic paraplegia (HSP), a lower-limb-predominant disorder of corticospinal motor neurons. We have identified four mutations in bicaudal D homolog 2 (Drosophila) (BICD2) in six kindreds affected by DCSMA, DCSMA with upper motor neuron features, or HSP. BICD2 encodes BICD2, a key adaptor protein that interacts with the dynein-dynactin motor complex, which facilitates trafficking of cellular cargos that are critical to motor neuron development and maintenance. We demonstrate that mutations resulting in amino acid substitutions in two binding regions of BICD2 increase its binding affinity for the cytoplasmic dynein-dynactin complex, which might result in the perturbation of BICD2-dynein-dynactin-mediated trafficking, and impair neurite outgrowth. These findings provide insight into the mechanism underlying both the static and the slowly progressive clinical features and the motor neuron pathology that characterize BICD2-associated diseases, and underscore the importance of the dynein-dynactin transport pathway in the development and survival of both lower and upper motor neurons.  相似文献   

12.
Spinal muscular atrophy (SMA) is one of the most common inherited causes of pediatric mortality. SMA is caused by deletions or mutations in the survival of motor neuron 1 (SMN1) gene, which results in SMN protein deficiency. Humans have a centromeric copy of the survival of motor neuron gene, SMN2, which is nearly identical to SMN1. However, SMN2 cannot compensate for the loss of SMN1 because SMN2 has a single-nucleotide difference in exon 7, which negatively affects splicing of the exon. As a result, most mRNA produced from SMN2 lacks exon 7. SMN2 mRNA lacking exon 7 encodes a truncated protein with reduced functionality. Improving SMN2 exon 7 inclusion is a goal of many SMA therapeutic strategies. The identification of regulators of exon 7 inclusion may provide additional therapeutic targets or improve the design of existing strategies. Although a number of regulators of exon 7 inclusion have been identified, the function of most splicing proteins in exon 7 inclusion is unknown. Here, we test the role of SR proteins and hnRNP proteins in SMN2 exon 7 inclusion. Knockdown and overexpression studies reveal that SRSF1, SRSF2, SRSF3, SRSF4, SRSF5, SRSF6, SRSF7, SRSF11, hnRNPA1/B1 and hnRNP U can inhibit exon 7 inclusion. Depletion of two of the most potent inhibitors of exon 7 inclusion, SRSF2 or SRSF3, in cell lines derived from SMA patients, increased SMN2 exon 7 inclusion and SMN protein. Our results identify novel regulators of SMN2 exon 7 inclusion, revealing potential targets for SMA therapeutics.  相似文献   

13.
The most common form of spinal muscular atrophy (SMA) is a recessive disorder caused by deleterious SMN1 mutations in 5q13, whereas the genetic etiologies of non-5q SMA are very heterogeneous and largely remain to be elucidated. In a Bulgarian family affected by autosomal-dominant proximal SMA, we performed genome-wide linkage analysis and whole-exome sequencing and found a heterozygous de novo c.320C>T (p.Ser107Leu) mutation in bicaudal D homolog 2 (Drosophila) (BICD2). Further analysis of BICD2 in a cohort of 119 individuals with non-5q SMA identified a second de novo BICD2 mutation, c.2321A>G (p.Glu774Gly), in a simplex case. Detailed clinical and electrophysiological investigations revealed that both families are affected by a very similar disease course, characterized by early childhood onset, predominant involvement of lower extremities, and very slow disease progression. The amino acid substitutions are located in two interaction domains of BICD2, an adaptor protein linking the dynein molecular motor with its cargo. Our immunoprecipitation and localization experiments in HeLa and SH-SY5Y cells and affected individuals’ lymphoblasts demonstrated that p.Ser107Leu causes increased dynein binding and thus leads to accumulation of BICD2 at the microtubule-organizing complex and Golgi fragmentation. In addition, the altered protein had a reduced colocalization with RAB6A, a regulator of vesicle trafficking between the Golgi and the endoplasmic reticulum. The interaction between p.Glu744Gly altered BICD2 and RAB6A was impaired, which also led to their reduced colocalization. Our study identifies BICD2 mutations as a cause of non-5q linked SMA and highlights the importance of dynein-mediated motility in motor neuron function in humans.  相似文献   

14.
15.
We report the mapping and characterization of 12 microsatellite markers including 11 novel markers. All markers were generated from overlapping YAC clones that span the spinal muscular atrophy (SMA) locus. PCR amplification of 32 overlapping YAC clones shows that 9 of the new markers (those set in italics) map to the interval between the two previous closest flanking markers (D5S629 and D5S557): cen - D5S6 - D5S125 - D5S435 - D5S1407-D5S629-D5S1410-D5S1411/D5S1412-D5S1413-D5S1414-D5Z8-D5Z9-CATT1-D5Z10/D5Z6-D5S557-D5S1408-D5S1409-D5S637-D5S351-MAP1B-tel. Four of these new markers detect multiple loci in and out of the SMA gene region. Genetic analysis of recombinant SMA families indicates that D5S1413 is a new proximal flanking locus for the SMA gene. Interestingly, among the 40 physically mapped loci, the 14 multilocus markers map contiguously to a genomic region that overlaps, and perhaps helps define, the minimum genetic region encompassing the SMA gene(s).  相似文献   

16.
17.
18.
Despite rapid progress in the physical characterization of murine and human genomes, little molecular information is available on certain regions, e.g., proximal mouse chromosome 11 (Chr 11) and human chromosome 2p (Chr 2p). We have localized thewobblerspinal atrophy genewrto proximal mouse Chr 11, tightly linked toRab1,a gene coding for a small GTP-binding protein, andGlns-ps1,an intronless pseudogene of the glutamine synthetase gene. We have now used these markers to construct a 1.3-Mb yeast artificial chromosome (YAC) contig of theRab1region on mouse Chr 11. Four YAC clones isolated from two independent YAC libraries were characterized by rare-cutting analysis, fluorescencein situhybridization (FISH), and sequence-tagged site (STS) isolation and mapping.Rab1andGlns-ps1were found to be only 200 kb apart. A potential CpG island near a methylatedNarI site and a trapped exon,ETG1.1,were found between these loci, and a new STS,AHY1.1,was found over 250 kb fromRab1.Two overlapping YACs were identified that contained a 150-kb region of human Chr 2p, comprising theRAB1locus,AHY1.1,and the human homologue ofETG1.1,indicating a high degree of conservation of this region in the two species. We mappedAHY1.1and thus humanRAB1on Chr 2p13.4–p14 using somatic cell hybrids and a radiation hybrid panel, thus extending a known region of conserved synteny between mouse Chr 11 and human Chr 2p. Recently, the geneLMGMD2Bfor a human recessive neuromuscular disease, limb girdle muscular dystrophy type 2B, has been mapped to 2p13–p16. The conservation between the mouseRab1and humanRAB1regions will be helpful in identifying candidate genes for thewobblerspinal muscular atrophy and in clarifying a possible relationship betweenwrandLMGMD2B.  相似文献   

19.
Preliminary in vitro and in vivo studies with valproic acid (VPA) in cell lines and patients with spinal muscular atrophy (SMA) demonstrate increased expression of SMN, supporting the possibility of therapeutic benefit. We performed an open label trial of VPA in 42 subjects with SMA to assess safety and explore potential outcome measures to help guide design of future controlled clinical trials. Subjects included 2 SMA type I ages 2–3 years, 29 SMA type II ages 2–14 years and 11 type III ages 2–31 years, recruited from a natural history study. VPA was well-tolerated and without evident hepatotoxicity. Carnitine depletion was frequent and temporally associated with increased weakness in two subjects. Exploratory outcome measures included assessment of gross motor function via the modified Hammersmith Functional Motor Scale (MHFMS), electrophysiologic measures of innervation including maximum ulnar compound muscle action potential (CMAP) amplitudes and motor unit number estimation (MUNE), body composition and bone density via dual-energy X-ray absorptiometry (DEXA), and quantitative blood SMN mRNA levels. Clear decline in motor function occurred in several subjects in association with weight gain; mean fat mass increased without a corresponding increase in lean mass. We observed an increased mean score on the MHFMS scale in 27 subjects with SMA type II (p≤0.001); however, significant improvement was almost entirely restricted to participants <5 years of age. Full length SMN levels were unchanged and Δ7SMN levels were significantly reduced for 2 of 3 treatment visits. In contrast, bone mineral density (p≤0.0036) and maximum ulnar CMAP scores (p≤0.0001) increased significantly.

Conclusions

While VPA appears safe and well-tolerated in this initial pilot trial, these data suggest that weight gain and carnitine depletion are likely to be significant confounding factors in clinical trials. This study highlights potential strengths and limitations of various candidate outcome measures and underscores the need for additional controlled clinical trials with VPA targeting more restricted cohorts of subjects.

Trial Registration

ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT00374075?term=NCT00374075&rank=1  相似文献   

20.
Paternal isodisomy for chromosome 5 was detected in a 2-year-old boy with type III spinal muscular atrophy (SMA), an autosomal recessive degenerative disorder of alpha motor neurons, known to map to 5q11.2-13.3. Examination of 17 short-sequence repeat polymorphisms spanning 5p15.1-15.3 to 5q33.3-qter produced no evidence of maternally inherited alleles. Cytogenetic analysis revealed a normal male karyotype, and FISH with probes closely flanking the SMA locus confirmed the presence of two copies of chromosome 5. No developmental abnormalities, other than those attributable to classical childhood-onset SMA, were present. While the absence of a maternally derived chromosome 5 could have produced the symptoms of SMA through the mechanism of genomic imprinting, the lack of more global developmental abnormalities would be unusual. Paternal transmission of two copies of a defective gene at the SMA locus seems to be the most likely cause of disease, but proof of this will have to await the identification of the SMA gene. While uniparental isodisomy is a rare event, it must be considered as a possible mechanism involved in SMA when conducting prenatal testing and counseling for this disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号