首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 271 毫秒
1.
Spondylo-megaepiphyseal-metaphyseal dysplasia (SMMD; OMIM 613330) is a dysostosis/dysplasia caused by recessive mutations in the homeobox-containing gene, NKX3-2 (formerly known as BAPX1). Because of the rarity of the condition, its diagnostic features and natural course are not well known. We describe clinical and radiographic findings in six patients (five of which with homozygous mutations in the NKX3-2 gene) and highlight the unusual and severe changes in the cervical spine and the neurologic complications. In individuals with SMMD, the trunk and the neck are short, while the limbs, fingers and toes are disproportionately long. Radiographs show a severe ossification delay of the vertebral bodies with sagittal and coronal clefts, missing ossification of the pubic bones, large round "balloon-like" epiphyses of the long bones, and presence of multiple pseudoepiphyses at all metacarpals and phalanges. Reduced or absent ossification of the cervical vertebrae leads to cervical instability with anterior or posterior kinking of the cervical spine (swan neck-like deformity, kyknodysostosis). As a result of the cervical spine instability or deformation, five of six patients in our series suffered cervical cord injury that manifested clinically as limb spasticity. Although the number of individuals observed is small, the high incidence of cervical spine deformation in SMMD is unique among skeletal dysplasias. Early diagnosis of SMMD by recognition of the radiographic pattern might prevent of the neurologic complications via prophylactic cervical spine stabilization.  相似文献   

2.
3.
4.
We present a case with spondylo-metaphyseal dysplasia type A4 characterized by ovoid vertebral bodies with anterior tongue-like deformities, widened irregular and sclerotic metaphyseal changes, short iliac wings, slightly short long bones and short tubular bones of the hands with irregular metaphyses. She also had bipartite trochlea and irregular patellar margins, which have not been described in spondylo-metaphyseal dysplasia types to date.  相似文献   

5.
The histopathology of growth cartilage of long bones was studied in two cases of chondroectodermal dysplasia (Ellis-Van Creveld syndrome), a case of short-rib polydactyly (SRP) type I (Saldino-Noonan syndrome), three cases of short-rib polydactyly (SRP) type III (Verma-Naumoff syndrome), and a case with polydactyly without other skeletal abnormalities but with visceral malformations. The lesions were qualitatively similar in chondroectodermal dysplasia and SRP I: regular concave ossification line, short, slightly irregular columns, regularly dispersed hypertrophic chondrocytes. In SRP III, the ossification line was irregular and the hypertrophic cells had a discontinuous distribution in clusters. No amylase resistant PAS intracytoplasmic inclusions were found. Short, slightly or markedly irregular primary trabeculae, some of them with wide cartilaginous cores, tongue prolongations and islands of cartilage situated along the periost were found in chondroectodermal dysplasia, SRP I and III. The case of polydactyly without other skeletal abnormalities had a normal morphology of the growth plate. These data suggest that there is a relationship between chondroectodermal dysplasia and SPR type I, and that SRP type III is distinct from SRP type I.  相似文献   

6.
We report on a new-born girl with multiple congenital anomalies consisting of major skeletal anomalies restricted to the left side, cleft palate, ventricular and atrial septal defect, retromicrognathia, short neck, dysplastic low-set ears and large birth weight. The left-side bony anomalies include shortening and bowing of the femur and tibia, hypoplasia of the fibula, hip dislocation, clubfoot and mild shortening of the long tubular bones in the left arm with elbow dislocation. The pregnancy was complicated by insulin-dependent gestational diabetes mellitus in the mother. The radiographic features were not consistent with the diagnosis of campomelic dysplasia, kyphomelic dysplasia or other skeletal dysplasias characterized by bowing and shortening of the long bones. To our knowledge, the multiple congenital anomalies, including major skeletal malformations, present in our case have never been simultaneously reported until now. A maternal diabetes syndrome in this infant is probable. The occurrence of major congenital malformations in offspring of women with gestational diabetes is reviewed and discussed. We provide evidence that gestational diabetes mellitus could be teratogenic. We recommend a careful diabetic control in every woman with a history of gestational diabetes.  相似文献   

7.
Several studies have evaluated the effects of dietary vitamin A (VA) on the incidence of skeletal deformities during early ontogeny of fish, but little is known about its effects on bones depending on their process of ossification (dermal or chondral). We examined the incidence of skeletal deformities along development (30 and 48 dph) by double staining technique, in dermal (haemal and caudal vertebral bodies) and chondral (neural and haemal spines, epural, parahypural and hypurals) bones in Senegal sole post metamorphosed larvae fed with different dietary VA levels (37 000, 44 666, 82 666 and 203 000 UI total VA kg?1 DW) during Artemia feeding phase (6–37 dph, at 18°C). Results obtained in this study showed that dietary VA disrupted the skeletogenesis in Senegalese sole post metamorphosed larvae by increasing the incidence of skeletal deformities in the axial skeleton and caudal fin complex, which were dependent on both bone morphogenesis and ossification processes. Fish fed with the highest dietary VA content showed the highest incidence of skeletal deformities and its value increased along ontogeny. However, when we compared the incidence of deformities in skeletal structures considering their ossification process, most skeletal structures derived from chondral ossification showed a significant higher increase in deformity incidences in fish fed an excess of VA (44 666, 82 666 and 203 000 UI kg?1 DW), however within chondral bones, hypurals deformity incidence only increased in sole larvae fed Artemia highest VA content. In contrast, this dietary dose‐response effect was only noted in dermal bones from fish fed the highest dose of VA (203 000 UI kg?1 DW). In addition, the incidence of deformities in chondral bones increased even when the dietary imbalance of VA was corrected, whereas dermal bones were not affected at later ages. These results indicated that depending on the ossification process from which different skeletal structures are derived, bones might be differentially affected by high dietary VA content. Those directly originated from the connective tissue with a preliminary cartilage stage were more sensitive to dietary VA excess than those formed by intramembranous ossification.  相似文献   

8.
Impairment of the tightly regulated ossification process leads to a wide range of skeletal dysplasias and deciphering their molecular bases has contributed to the understanding of this complex process. Here, we report a homozygous mutation in the mitochondria-associated granulocyte macrophage colony stimulating factor-signaling gene (MAGMAS) in a novel and severe spondylodysplastic dysplasia. MAGMAS, also referred to as PAM16 (presequence translocase-associated motor 16), is a mitochondria-associated protein involved in preprotein translocation into the matrix. We show that MAGMAS is specifically expressed in trabecular bone and cartilage at early developmental stages and that the mutation leads to an instability of the protein. We further demonstrate that the mutation described here confers to yeast strains a temperature-sensitive phenotype, impairs the import of mitochondrial matrix pre-proteins and induces cell death. The finding of deleterious MAGMAS mutations in an early lethal skeletal dysplasia supports a key role for this mitochondrial protein in the ossification process.  相似文献   

9.
The authors report a case of lethal neonatal dwarfism characterized by striking micromelia, fused rudimentary and supernumerary digits, large, soft head, pronounced hypertelorism, protruding eyes set laterally, enormous omphalocele and severe deficiency of tubular bone and spine ossification. Histologic examination showed lack of ossification of the cartilaginous anlage of many tubular bones. The cartilage had irregularly distributed chondrocytes. The matrix contained hypocellular and degenerated areas with scattered large chondrocytes. In a few bones a very disorganized growth cartilage was present. The case is similar to that described by Piepkorn et al. (1977) and may represent a severe form of "boomerang dysplasia" (Kozlowski et al., 1981; Tenconi et al., 1983; Kozlowski et al., 1985; Winship et al., 1990).  相似文献   

10.
Metatropic dysplasia is a congenital skeletal dysplasia characterized by severe platyspondyly, dumbbell-like deformity of long tubular bones, and progressive kyphoscoliosis with growth. It is caused by mutations in the gene TRPV4, encoding the transient receptor potential vanilloid 4, which acts as a calcium channel. Many heterozygous single base mutations of this gene have been associated with the disorder, showing autosomal dominant inheritance. Although abnormal endochondral ossification has been observed by histological examination of bone in a patient with lethal metatropic dysplasia, the etiology of the disorder remains largely unresolved. As dental pulp stem cells (DPSCs) are mesenchymal stem cells that differentiate into bone lineage cells, DPSCs derived from patients with congenital skeletal dysplasia might be useful as a disease-specific cellular model for etiological investigation. The purpose of this study was to clarify the pathological association between TRPV4 mutation and chondrocyte differentiation by analyzing DPSCs from a patient with non-lethal metatropic dysplasia. We identified a novel heterozygous single base mutation, c.1855C>T in TRPV4. This was predicted to be a missense mutation, p.L619F, in putative transmembrane segment 5. The mutation was repaired by CRISPR/Cas9 system to obtain isogenic control DPSCs for further analysis. The expression of stem cell markers and fibroblast-like morphology were comparable between patient-derived mutant and control DPSCs, although expression of TRPV4 was lower in mutant DPSCs than control DPSCs. Despite the lower TRPV4 expression in mutant DPSCs, the intracellular Ca2+ level was comparable at the basal level between mutant and control DPSCs, while its level was markedly higher following stimulation with 4α-phorbol 12,13-didecanoate (4αPDD), a specific agonist for TRPV4, in mutant DPSCs than in control DPSCs. In the presence of 4αPDD, we observed accelerated early chondrocyte differentiation and upregulated mRNA expression of SRY-box 9 (SOX9) in mutant DPSCs. Our findings suggested that the novel missense mutation c.1855C>T of TRPV4 was a gain-of-function mutation leading to enhanced intracellular Ca2+ level, which was associated with accelerated chondrocyte differentiation and SOX9 upregulation. Our results also suggest that patient-derived DPSCs can be a useful disease-specific cellular model for elucidating the pathological mechanism of metatropic dysplasia.  相似文献   

11.
12.
We studied skull, vertebral column, and limb skeleton development in Japanese clawed salamander Onychodactylus japonicus (Hynobiidae). The study is based on the ontogenetic series of embryos and larvae obtained from wild-captured adults by artificial induction of breeding using hormonal stimulation. The first stages of the skeleton formation in O. japonicus are shifted to the late embryonic period and hatching larvae already possess a well-ossified vertebral column, large number of skull ossifications and show signs of ossification in the forelimb skeleton. Compared to the primitive pattern of the skeleton development typical for other hynobiid salamanders, O. japonicus shows a number of heterochronies related to embryonization. In particular, this species is characterized by an earlier ossification of the vertebral column compared to that of the skull and by the delayed development and early reduction of the coronoid. Our results, along with the previously reported data on the skeleton development in the Fischer’s clawed salamander O. fischeri (Smirnov and Vassilieva, 2002), indicate that the genus Onychodactylus is characterized by the loss or reduction of several skeletal features typically found at early larval stages in other Hynobiidae species. In particular, provisional bones (especially the coronoid) and their dentition are underdeveloped. In addition, it is corroborated that the first tooth generation is absent in Onychodactylus, whereas such monocuspid nonpedicellate tooth generation normally develops at the early larval stages of other caudate amphibians. Since similar patterns of skeleton ontogeny are observed in other caudate groups with different extent of embryonization, it is proposed that, in different lineages of Urodela, the evolution of ontogeny followed similar pathways and was accompanied by the same changes in skeletogenesis.  相似文献   

13.
Human paternal uniparental disomy for chromosome 14 (upd(14)pat) presents with skeletal abnormalities, joint contractures, dysmorphic facial features and developmental delay/mental retardation. Distal human chromosome 14 (HSA14) is homologous to distal mouse chromosome 12 (MMU12) and both regions have been shown to contain imprinted genes. In humans, consistent radiographic findings include a narrow, bell-shaped thorax with caudal bowing of the anterior ribs, cranial bowing of the posterior ribs and flaring of the iliac wings without shortening or dysplasia of the long bones. Mice with upd(12)pat have thin ribs with delayed ossification of the sternum, skull and feet. In both mice and humans, the axial skeleton is predominantly affected. We hypothesize that there is an imprinted gene or genes on HSA14/MMU12 that specifically affects rib/thorax development and the maturation of ossification centers in the sternum, feet and skull with little effect on long bone development.  相似文献   

14.
In this paper, 981 reared juveniles of gilthead seabream (Sparus aurata) were analysed, 721 of which were from a commercial hatchery located in Northern Italy (Venice, Italy) and 260 from the Hellenic Center for Marine Research (Crete, Greece). These individuals were from 4 different egg batches, for a total of 10 different lots. Each egg batch was split into two lots after hatching, and reared with two different methodologies: intensive and semi-intensive. All fish were subjected to processing for skeletal anomaly and meristic count analysis. The aims involved: (1) quantitatively and qualitatively analyzing whether differences in skeletal elements arise between siblings and, if so, what they are; (2) investigating if any skeletal bone tissue/ossification is specifically affected by changing environmental rearing conditions; and (3) contributing to the identification of the best practices for gilthead seabream larval rearing in order to lower the deformity rates, without selections. The results obtained in this study highlighted that: i) in all the semi-intensive lots, the bones having intramembranous ossification showed a consistently lower incidence of anomalies; ii) the same clear pattern was not observed in the skeletal elements whose ossification process requires a cartilaginous precursor. It is thus possible to ameliorate the morphological quality (by reducing the incidence of severe skeletal anomalies and the variability in meristic counts of dermal bones) of reared seabream juveniles by lowering the stocking densities (maximum 16 larvae/L) and increasing the volume of the hatchery rearing tanks (minimum 40 m3). Feeding larvae with a wide variety of live (wild) preys seems further to improve juvenile skeletal quality. Additionally, analysis of the morphological quality of juveniles reared under two different semi-intensive conditions, Mesocosm and Large Volumes, highlighted a somewhat greater capacity of Large Volumes to significantly augment the gap with siblings reared in intensive (conventional) modality.  相似文献   

15.
The long bones of vertebrate limbs originate from cartilage templates and are formed by the process of endochondral ossification. This process requires that chondrocytes undergo a progressive maturation from proliferating to postmitotic prehypertrophic to mature, hypertrophic chondrocytes. Coordinated control of proliferation and maturation regulates growth of the skeletal elements. Various signals and pathways have been implicated in orchestrating these processes, but the underlying intracellular molecular mechanisms are often not entirely known. Here we demonstrated in the chick using replication-competent retroviruses that constitutive activation of Calcium/Calmodulin-dependent kinase II (CaMKII) in the developing wing resulted in elongation of skeletal elements associated with premature differentiation of chondrocytes. The premature maturation of chondrocytes was a cell-autonomous effect of constitutive CaMKII signaling associated with down-regulation of cell-cycle regulators and up-regulation of chondrocyte maturation markers. In contrast, the elongation of the skeletal elements resulted from a non-cell autonomous up-regulation of the Indian hedgehog responsive gene encoding Parathyroid-hormone-related peptide. Reduction of endogenous CaMKII activity by overexpressing an inhibitory peptide resulted in shortening of the skeletal elements associated with a delay in chondrocyte maturation. Thus, CaMKII is an essential component of intracellular signaling pathways regulating chondrocyte maturation.  相似文献   

16.
Gnathodiaphyseal dysplasia (GDD) is a rare skeletal syndrome characterized by bone fragility, sclerosis of tubular bones, and cemento-osseous lesions of the jawbone. By linkage analysis of a large Japanese family with GDD, we previously mapped the GDD locus to chromosome 11p14.3-15.1. In the critical region determined by recombination mapping, we identified a novel gene (GDD1) that encodes a 913-amino-acid protein containing eight putative transmembrane-spanning domains. Two missense mutations (C356R and C356G) of GDD1 were identified in the two families with GDD (the original Japanese family and a new African American family), and both missense mutations occur at the cysteine residue at amino acid 356, which is evolutionarily conserved among human, mouse, zebrafish, fruit fly, and mosquito. Cellular localization to the endoplasmic reticulum suggests a role for GDD1 in the regulation of intracellular calcium homeostasis.  相似文献   

17.
Skeletal dysplasias are highly variable Mendelian phenotypes. Molecular diagnosis of skeletal dysplasias is complicated by their extreme clinical and genetic heterogeneity. We describe a clinically recognizable autosomal-recessive disorder in four affected siblings from a consanguineous Saudi family, comprising progressive spondyloepimetaphyseal dysplasia, short stature, facial dysmorphism, short fourth metatarsals, and intellectual disability. Combined autozygome/exome analysis identified a homozygous frameshift mutation in RSPRY1 with resulting nonsense-mediated decay. Using a gene-centric “matchmaking” system, we were able to identify a Peruvian simplex case subject whose phenotype is strikingly similar to the original Saudi family and whose exome sequencing had revealed a likely pathogenic homozygous missense variant in the same gene. RSPRY1 encodes a hypothetical RING and SPRY domain-containing protein of unknown physiological function. However, we detect strong RSPRY1 protein localization in murine embryonic osteoblasts and periosteal cells during primary endochondral ossification, consistent with a role in bone development. This study highlights the role of gene-centric matchmaking tools to establish causal links to genes, especially for rare or previously undescribed clinical entities.Keyword: matchmaking, autozygome, exome, skeletal dysplasia, mucopolysaccharidosis, craniosynostosis  相似文献   

18.
Heart formation is a complex morphogenetic process, and perturbations in cardiac morphogenesis lead to congenital heart disease. NKX2-5 is a key causative gene associated with cardiac birth defects, presumably because of its essential roles during the early steps of cardiogenesis. Previous studies in model organisms implicate NKX2-5 homologs in numerous processes, including cardiac progenitor specification, progenitor proliferation, and chamber morphogenesis. By inhibiting function of the zebrafish NKX2-5 homologs, nkx2.5 and nkx2.7, we show that nkx genes are essential to establish the original dimensions of the linear heart tube. The nkx-deficient heart tube fails to elongate normally: its ventricular portion is atypically short and wide, and its atrial portion is disorganized and sprawling. This atrial phenotype is associated with a surplus of atrial cardiomyocytes, whereas ventricular cell number is normal at this stage. However, ventricular cell number is decreased in nkx-deficient embryos later in development, when cardiac chambers are emerging. Thus, we conclude that nkx genes regulate heart tube extension and exert differential effects on ventricular and atrial cell number. Our data suggest that morphogenetic errors could originate during early stages of heart tube assembly in patients with NKX2-5 mutations.  相似文献   

19.
Type 10 collagen alpha 1 (COL10A1) is a short-chain collagen of cartilage synthesized by chondrocytes during the growth of long bones. COL10A1 mutations, which frequently result in COL10A1 haploinsufficiency, have been identified in patients with Schmid metaphyseal chondrodysplasia (SMCD), a cartilage disorder characterized by short-limbed short stature and bowed legs. Similarities between SMCD and short stature in various dog breeds suggested COL10A1 as a candidate for canine skeletal dysplasia. We report the sequencing of the exons and promoter region of the COL10A1 gene in dog breeds fixed for a specific type of skeletal dysplasia known as chondrodysplasia, breeds that segregate the skeletal dysplasia phenotype, and control dogs of normal stature. Thirteen single nucleotide polymorphisms (SNPs), one insertion, and two deletions, one of which introduces a premature stop codon and likely results in nonsense-mediated decay and the degradation of the mutant allele product, were identified in the coding region. There appear to be no causal relationships between the polymorphisms identified in this study and short stature in dogs. Although COL10A1 haploinsufficiency is an important cause of SMCD in humans, it does not seem to be responsible for the skeletal dysplasia phenotype in these dog breeds. In addition, homozygosity for the nonsense allele does not result in the observed canine skeletal dysplasia phenotype. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users.  相似文献   

20.
Two different patterns of the condensation and chondrification of the limbs of tetrapods are known from extensive studies on their early skeletal development. These are on the one hand postaxial dominance in the sequential formation of skeletal elements in amniotes and anurans, and on the other, preaxial dominance in urodeles. The present study investigates the relative sequence of ossification in the fore‐ and hindlimbs of selected tetrapod taxa based on a literature survey in comparison to the patterns of early skeletal development, i.e. mesenchymal condensation and chondrification, representing essential steps in the late stages of tetrapod limb development. This reveals the degree of conservation and divergence of the ossification sequence from early morphogenetic events in the tetrapod limb skeleton. A step‐by‐step recapitulation of condensation and chondrification during the ossification of limbs can clearly be refuted. However, some of the deeper aspects of early skeletal patterning in the limbs, i.e. the general direction of development and sequence of digit formation are conserved, particularly in anamniotes. Amniotes show a weaker coupling of the ossification sequence in the limb skeleton with earlier condensation and chondrification events. The stronger correlation between the sequence of condensation/chondrification and ossification in the limbs of anamniotes may represent a plesiomorphic trait of tetrapods. The pattern of limb ossification across tetrapods also shows that some trends in the sequence of ossification of their limb skeleton are shared by major clades possibly representing phylogenetic signals. This review furthermore concerns the ossification sequence of the limbs of the Palaeozoic temnospondyl amphibian Apateon sp. For the first time this is described in detail and its patterns are compared with those observed in extant taxa. Apateon sp. shares preaxial dominance in limb development with extant salamanders and the specific order of ossification events in the fore‐ and hindlimb of this fossil dissorophoid is almost identical to that of some modern urodeles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号