首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In mammals, coat complex II (COPII)-coated transport vesicles deliver secretory cargo to vesicular tubular clusters (VTCs) that facilitate cargo sorting and transport to the Golgi. We documented in vitro tethering and SNARE-dependent homotypic fusion of endoplasmic reticulum-derived COPII transport vesicles to form larger cargo containers characteristic of VTCs ( Xu, D., and Hay, J. C. (2004) J. Cell Biol. 167, 997-1003). COPII vesicles thus appear to contain all necessary components for homotypic tethering and fusion, providing a pathway for de novo VTC biogenesis. Here we demonstrate that antibodies against the endoplasmic reticulum/Golgi SNARE Syntaxin 5 inhibit COPII vesicle homotypic tethering as well as fusion, implying an unanticipated role for SNAREs upstream of fusion. Inhibition of SNARE complex access and/or disassembly with dominant-negative alpha-soluble NSF attachment protein (SNAP) also inhibited tethering, implicating SNARE status as a critical determinant in COPII vesicle tethering. The tethering-defective vesicles generated in the presence of dominant-negative alpha-SNAP specifically lacked the Rab1 effectors p115 and GM130 but not other peripheral membrane proteins. Furthermore, Rab effectors, including p115, were shown to be required for homotypic COPII vesicle tethering. Thus, our results demonstrate a requirement for SNARE-dependent tether recruitment and function in COPII vesicle fusion. We anticipate that recruitment of tether molecules by an upstream SNARE signal ensures that tethering events are initiated only at focal sites containing appropriately poised fusion machinery.  相似文献   

2.
We have determined the concentrations of the secretory proteins amylase and chymotrypsinogen and the membrane proteins KDELr and rBet1 in COPII- and COPI-coated pre-Golgi compartments of pancreatic cells by quantitative immunoelectron microscopy. COPII was confined to ER membrane buds and adjacent vesicles. COPI occurred on vesicular tubular clusters (VTCs), Golgi cisternae, the trans-Golgi network, and immature secretory granules. Both secretory proteins exhibited a first, significant concentration step in noncoated segments of VTC tubules and were excluded from COPI-coated tips. By contrast, KDELr and rBet1 showed a first, significant concentration in COPII-coated ER buds and vesicles and were prominently present in COPI-coated tips of VTC tubules. These data suggest an important role of VTCs in soluble cargo concentration by exclusion from COPI-coated domains.  相似文献   

3.
Coat protein complexes contain an inner shell that sorts cargo and an outer shell that helps deform the membrane to give the vesicle its shape. There are three major types of coated vesicles in the cell: COPII, COPI, and clathrin. The COPII coat complex facilitates vesicle budding from the endoplasmic reticulum (ER), while the COPI coat complex performs an analogous function in the Golgi. Clathrin-coated vesicles mediate traffic from the cell surface and between the trans-Golgi and endosome. While the assembly and structure of these coat complexes has been extensively studied, the disassembly of COPII and COPI coats from membranes is less well understood. We describe a proteomic and genetic approach that connects the J-domain chaperone auxilin, which uncoats clathrin-coated vesicles, to COPII and COPI coat complexes. Consistent with a functional role for auxilin in the early secretory pathway, auxilin binds to COPII and COPI coat subunits. Furthermore, ER–Golgi and intra-Golgi traffic is delayed at 15°C in swa2Δ mutant cells, which lack auxilin. In the case of COPII vesicles, we link this delay to a defect in vesicle fusion. We propose that auxilin acts as a chaperone and/or uncoating factor for transport vesicles that act in the early secretory pathway.  相似文献   

4.
TRAPPI is a large complex that mediates the tethering of COPII vesicles to the Golgi (heterotypic tethering) in the yeast Saccharomyces cerevisiae. In mammalian cells, COPII vesicles derived from the transitional endoplasmic reticulum (tER) do not tether directly to the Golgi, instead, they appear to tether to each other (homotypic tethering) to form vesicular tubular clusters (VTCs). We show that mammalian Bet3p (mBet3p), which is the most highly conserved TRAPP subunit, resides on the tER and adjacent VTCs. The inactivation of mBet3p results in the accumulation of cargo in membranes that colocalize with the COPII coat. Furthermore, using an assay that reconstitutes VTC biogenesis in vitro, we demonstrate that mBet3p is required for the tethering and fusion of COPII vesicles to each other. Consistent with the proposal that mBet3p is required for VTC biogenesis, we find that ERGIC-53 (VTC marker) and Golgi architecture are disrupted in siRNA-treated mBet3p-depleted cells. These findings imply that the TRAPPI complex is essential for VTC biogenesis.  相似文献   

5.
Traffic COPs of the early secretory pathway   总被引:7,自引:1,他引:6  
Intracellular transport between the endoplasmic reticulum and Golgi compartments is mediated by coat protein complexes (COPI and COPII) that form transport vesicles and collect the desired set of cargo. Although the COPI and COPII coats are molecularly distinct, a number of mechanistic parallels appear to be emerging, most notably a general role for small guanine triphosphatases in co-ordinating coat assembly with cargo selection. A combination of morphological, biochemical, and genetic methods is revealing a very dynamic relationship between these compartments, and highlights a central role for COPs in directing traffic through the early secretory pathway. This review focuses on recent advances in molecular mechanisms underlying coated-vesicle assembly and connections with cellular structures.  相似文献   

6.
Traffic COPs and the formation of vesicle coats   总被引:9,自引:0,他引:9  
Forward and retrograde trafficking of secretory proteins between the endoplasmic reticulum and the Golgi apparatus is driven by two biochemically distinct vesicle coats, COPI and COPII. Assembly of the coats on their target membranes is thought to provide the driving force for membrane deformation and the selective packaging of cargo and targeting molecules into nascent transport vesicles. This review describes our current knowledge on these issues and discusses how the two coats may be differentially targeted and assembled to achieve protein sorting and transport within the early secretory pathway.  相似文献   

7.
Membrane traffic between the endoplasmic reticulum (ER) and the Golgi complex is regulated by two vesicular coat complexes, COPII and COPI. COPII has been implicated in the selective packaging of anterograde cargo into coated transport vesicles budding from the ER [1]. In mammalian cells, these vesicles coalesce to form tubulo-vesicular transport complexes (TCs), which shuttle anterograde cargo from the ER to the Golgi complex [2] [3] [4]. In contrast, COPI-coated vesicles are proposed to mediate recycling of proteins from the Golgi complex to the ER [1] [5] [6] [7]. The binding of COPI to COPII-coated TCs [3] [8] [9], however, has led to the proposal that COPI binds to TCs and specifically packages recycling proteins into retrograde vesicles for return to the ER [3] [9]. To test this hypothesis, we tracked fluorescently tagged COPI and anterograde-transport markers simultaneously in living cells. COPI predominated on TCs shuttling anterograde cargo to the Golgi complex and was rarely observed on structures moving in directions consistent with retrograde transport. Furthermore, a progressive segregation of COPI-rich domains and anterograde-cargo-rich domains was observed in the TCs. This segregation and the directed motility of COPI-containing TCs were inhibited by antibodies that blocked COPI function. These observations, which are consistent with previous biochemical data [2] [9], suggest a role for COPI within TCs en route to the Golgi complex. By sequestering retrograde cargo in the anterograde-directed TCs, COPI couples the sorting of ER recycling proteins [10] to the transport of anterograde cargo.  相似文献   

8.
COPI and COPII are vesicle coat complexes whose assembly is regulated by the ARF1 and Sar1 GTPases, respectively. We show that COPI and COPII coat complexes are recruited separately and independently to ER (COPII), pre-Golgi (COPI, COPII), and Golgi (COPI) membranes of mammalian cells. To address their individual roles in ER to Golgi transport, we used stage specific in vitro transport assays to synchronize movement of cargo to and from pre-Golgi intermediates, and GDP- and GTP-restricted forms of Sar1 and ARF1 proteins to control coat recruitment. We find that COPII is solely responsible for export from the ER, is lost rapidly following vesicle budding and mediates a vesicular step required for the build-up of pre-Golgi intermediates composed of clusters of vesicles and small tubular elements. COPI is recruited onto pre-Golgi intermediates where it initiates segregation of the anterograde transported protein vesicular stomatitis virus glycoprotein (VSV-G) from the retrograde transported protein p58, a protein which actively recycles between the ER and pre-Golgi intermediates. We propose that sequential coupling between COPII and COPI coats is essential to coordinate and direct bi-directional vesicular traffic between the ER and pre-Golgi intermediates involved in transport of protein to the Golgi complex.  相似文献   

9.
The small GTPase Rab2 requires atypical protein kinase C iota/lambda (PKCiota/lambda) kinase activity to promote vesicle budding from normal rat kidney cell microsomes (Tisdale, E. J. (2000) Traffic 1, 702-712). The released vesicles lack anterograde-directed cargo but contain coat protein I (COPI) and the recycling protein p53/p58, suggesting that the vesicles traffic in the retrograde pathway. In this study, we have directly characterized the role of PKCiota/lambda in the early secretory pathway. A peptide corresponding to the unique PKCiota/lambda pseudosubstrate domain was introduced into an in vitro assay that efficiently reconstitutes transport of vesicular stomatitis virus glycoprotein from the endoplasmic reticulum to the cis-medial Golgi compartments. This peptide blocked transport in a dose-dependent manner. Moreover, normal rat kidney cells incubated with Rab2 and the pseudosubstrate peptide displayed abundant swollen or dilated vesicles that contained Rab2, PKCiota/lambda, beta-COP, and p53/p58. Because Rab2, beta-COP, and p53/p58 are marker proteins for pre-Golgi intermediates (vesicular tubular clusters,VTCs), most probably the swollen vesicles are derived from VTCs. Similar results were obtained when the assays were supplemented with kinase-dead PKCiota/lambda (W274K). Both the pseudosubstrate peptide and kinase-dead PKCiota/lambda in tandem with Rab2 caused sustained membrane association of PKCiota/lambda, suggesting that reverse translocation was inhibited. Importantly, the inhibitory phenotype of kinase-dead PKCiota/lambda was reversed by PKCiota/lambda wild type. These combined results indicate that PKCiota/lambda is essential for protein transport in the early secretory pathway and suggest that PKCiota/lambda kinase activity is required to promote Rab2-mediated vesicle budding at a VTC subcompartment enriched in recycling cargo.  相似文献   

10.
The coatomer (COPI) complex mediates Golgi to ER recycling of membrane proteins containing a dilysine retrieval motif. However, COPI was initially characterized as an anterograde-acting coat complex. To investigate the direct and primary role(s) of COPI in ER/Golgi transport and in the secretory pathway in general, we used PCR-based mutagenesis to generate new temperature-conditional mutant alleles of one COPI gene in Saccharomyces cerevisiae, SEC21 (γ-COP). Unexpectedly, all of the new sec21 ts mutants exhibited striking, cargo-selective ER to Golgi transport defects. In these mutants, several proteins (i.e., CPY and α-factor) were completely blocked in the ER at nonpermissive temperature; however, other proteins (i.e., invertase and HSP150) in these and other COPI mutants were secreted normally. Nearly identical cargo-specific ER to Golgi transport defects were also induced by Brefeldin A. In contrast, all proteins tested required COPII (ER to Golgi coat complex), Sec18p (NSF), and Sec22p (v-SNARE) for ER to Golgi transport. Together, these data suggest that COPI plays a critical but indirect role in anterograde transport, perhaps by directing retrieval of transport factors required for packaging of certain cargo into ER to Golgi COPII vesicles. Interestingly, CPY–invertase hybrid proteins, like invertase but unlike CPY, escaped the sec21 ts mutant ER block, suggesting that packaging into COPII vesicles may be mediated by cis-acting sorting determinants in the cargo proteins themselves. These hybrid proteins were efficiently targeted to the vacuole, indicating that COPI is also not directly required for regulated Golgi to vacuole transport. Additionally, the sec21 mutants exhibited early Golgi-specific glycosylation defects and structural aberrations in early but not late Golgi compartments at nonpermissive temperature. Together, these studies demonstrate that although COPI plays an important and most likely direct role both in Golgi–ER retrieval and in maintenance/function of the cis-Golgi, COPI does not appear to be directly required for anterograde transport through the secretory pathway.  相似文献   

11.
Protein trafficking is achieved by a bidirectional vesicle flow between the various compartments of the eukaryotic cell. COPII coated vesicles mediate anterograde protein transport from the endoplasmic reticulum to the Golgi apparatus, whereas retrograde Golgi-to-endoplasmic reticulum vesicles use the COPI coat. Inactivation of COPI vesicle formation in conditional sec21 (gamma-COP) mutants rapidly blocks transport of certain proteins along the early secretory pathway. We have identified the integral membrane protein Mst27p as a strong suppressor of sec21-3 and ret1-1 mutants. A C-terminal KKXX motif of Mst27p that allows direct binding to the COPI complex is crucial for its suppression ability. Mst27p and its homolog Yar033w (Mst28p) are part of the same complex. Both proteins contain cytoplasmic exposed C termini that have the ability to interact directly with COPI and COPII coat complexes. Site-specific mutations of the COPI binding domain abolished suppression of the sec21 mutants. Our results indicate that overexpression of MST27 provides an increased number of coat binding sites on membranes of the early secretory pathway and thereby promotes vesicle formation. As a consequence, the amount of cargo that can bind COPI might be important for the regulation of the vesicle flow in the early secretory pathway.  相似文献   

12.
Atypical protein kinase C iota/lambda (PKCiota/lambda) is essential for protein transport in the early secretory pathway. The small GTPase Rab2 selectively recruits the kinase to vesicular tubular clusters (VTCs) where PKCiota/lambda phosphorylates glyceraldehyde-3-phosphate dehydrogenase (GAPDH). VTCs are composed of small vesicles and tubules and serve as transport intermediates that shuttle cargo from the endoplasmic reticulum to the Golgi complex. These structures are the first site of segregation of the anterograde and retrograde pathways. When Rab2 binds to a VTC subcompartment, the subsequent recruitment of PKCiota/lambda and soluble components, including COPI (coatomer and ADP-ribosylation factor), results in the release of retrograde-directed vesicles. Because Rab2 stimulates PKCiota/lambda membrane association in a dose-dependent manner, we investigated whether the two proteins physically interact. Using a combination of in vivo and in vitro assays, we found that Rab2 interacts directly with PKCiota/lambda and that this interaction occurs through the Rab2 amino terminus (residues 1-19) and the PKCiota/lambda regulatory domain. A mutant lacking the PKCiota/lambda binding domain (Rab2N'Delta19) was functionally characterized. In contrast to Rab2, Rab2N'Delta19 failed to recruit PKCiota/lambda to normal rat kidney microsomes in a quantitative binding assay. To determine whether Rab2 modulates the ability of PKCiota/lambda to phosphorylate GAPDH, an in vitro kinase assay was supplemented with Rab2 or Rab2N'Delta19. Rab2 inhibited PKCiota/lambda-dependent GAPDH phosphorylation, whereas no effect was observed when the assay was performed with the aminoterminal truncation mutant. These results suggest that a downstream effector recruited to the VTC stimulates PKCiota/lambda-mediated GAPDH phosphorylation by alleviating the inhibition imposed by Rab2-PKCiota/lambda interaction.  相似文献   

13.
Although vesicular transport in eukaryotic cells involves a number of different carriers, one common feature is that most of them use small GTPases to direct coat assembly at the donor membrane. COPII coated vesicles bud from the endoplasmic reticulum to selectively export secretory cargo en route to the Golgi complex. Vesicle formation involves the stepwise recruitment of the small GTPase Sar1 and two large heterodimeric complexes Sec23-Sec24 and Sec13-Sec31 to the membrane. A new structural study now provides breathtaking molecular insights into the formation of the Sec23-Sec24-Sar1 pre-budding complex and into COPII coat assembly.  相似文献   

14.
 Newly synthesized proteins destined for delivery to the cell surface are inserted cotranslationally into the endoplasmic reticulum (ER) and, after their correct folding, are transported out of the ER. During their transport to the cell surface, cargo proteins pass through the various cisternae of the Golgi apparatus and, in the trans-most cisternae of the stack, are sorted into constitutive secretory vesicles that fuse with the plasma membrane. Simultaneously with anterograde protein transport, retrograde protein transport occurs within the Golgi complex as well as from the Golgi back to the ER. Vesicular transport within the early secretory pathway is mediated by two types of non-clathrin coated vesicles: COPI- and COPII-coated vesicles. The formation of these carrier vesicles depends on the recruitment of cytosolic coat proteins that are thought to act as a mechanical device to shape a flattened donor membrane into a spherical vesicle. A general molecular machinery that mediates targeting and fusion of carrier vesicles has been identified as well. Beside a general overview of the various coat structures known today, we will discuss issues specifically related to the biogenesis of COPI-coated vesicles: (1) a possible role of phospholipase D in the formation of COPI-coated vesicles; (2) a functional role of a novel family of transmembrane proteins, the p24 family, in the initiation of COPI assembly; and (3) the direction COPI-coated vesicles may take within the early secretory pathway. Moreover, we will consider two alternative mechanisms of protein transport through the Golgi stack: vesicular transport versus cisternal maturation. Accepted: 24 October 1997  相似文献   

15.
ER to Golgi transport: Requirement for p115 at a pre-Golgi VTC stage   总被引:1,自引:0,他引:1  
The membrane transport factor p115 functions in the secretory pathway of mammalian cells. Using biochemical and morphological approaches, we show that p115 participates in the assembly and maintenance of normal Golgi structure and is required for ER to Golgi traffic at a pre-Golgi stage. Injection of antibodies against p115 into intact WIF-B cells caused Golgi disruption and inhibited Golgi complex reassembly after BFA treatment and wash-out. Addition of anti-p115 antibodies or depletion of p115 from a VSVtsO45 based semi-intact cell transport assay inhibited transport. The inhibition occurred after VSV glycoprotein (VSV-G) exit from the ER but before its delivery to the Golgi complex, and resulted in VSV-G protein accumulating in peripheral vesicular tubular clusters (VTCs). The p115-requiring step of transport followed the rab1-requiring step and preceded the Ca(2+)-requiring step. Unexpectedly, mannosidase I redistributed from the Golgi complex to colocalize with VSV-G protein arrested in pre-Golgi VTCs by p115 depletion. Redistribution of mannosidase I was also observed in cells incubated at 15 degrees C. Our data show that p115 is essential for the translocation of pre-Golgi VTCs from peripheral sites to the Golgi stack. This defines a previously uncharacterized function for p115 at the VTC stage of ER to Golgi traffic.  相似文献   

16.
Cargo proteins exiting the endoplasmic reticulum en route to the Golgi are typically carried in 60-70 nm vesicles surrounded by the COPII protein coat. Some secretory cargo assemblies in specialized mammalian cells are too large for transport within such carriers. Recent studies on procollagen-I and chylomicron trafficking have reached conflicting conclusions regarding the role of COPII proteins in ER exit of these large biological assemblies. COPII is no doubt essential for such transport in vivo, but it remains unclear whether COPII envelops the membrane surrounding large cargo or instead plays a more indirect role in transport carrier biogenesis.  相似文献   

17.
Secretory proteins are exported from the endoplasmic reticulum (ER) in transport vesicles formed by the coat protein complex II (COPII). We detected Erv26p as an integral membrane protein that was efficiently packaged into COPII vesicles and cycled between the ER and Golgi compartments. The erv26Delta mutant displayed a selective secretory defect in which the pro-form of vacuolar alkaline phosphatase (pro-ALP) accumulated in the ER, whereas other secretory proteins were transported at wild-type rates. In vitro budding experiments demonstrated that Erv26p was directly required for packaging of pro-ALP into COPII vesicles. Moreover, Erv26p was detected in a specific complex with pro-ALP when immunoprecipitated from detergent-solublized ER membranes. Based on these observations, we propose that Erv26p serves as a transmembrane adaptor to link specific secretory cargo to the COPII coat. Because ALP is a type II integral membrane protein in yeast, these findings imply that an additional class of secretory cargo relies on adaptor proteins for efficient export from the ER.  相似文献   

18.
Secretory proteins exit the ER in transport vesicles that fuse to form vesicular tubular clusters (VTCs) which move along microtubule tracks to the Golgi apparatus. Using the well-characterized in vitro approach to study the properties of Golgi membranes, we determined whether the Golgi enzyme NAGT I is transported to ER/Golgi intermediates. Secretory cargo was arrested at distinct steps of the secretory pathway of a glycosylation mutant cell line, and in vitro complementation of the glycosylation defect was determined. Complementation yield increased after ER exit of secretory cargo and was optimal when transport was blocked at an ER/Golgi intermediate step. The rapid drop of the complementation yield as secretory cargo progresses into the stack suggests that Golgi enzymes are preferentially targeted to ER/Golgi intermediates and not to membranes of the Golgi stack. Two mechanisms for in vitro complementation could be distinguished due to their different sensitivities to brefeldin A (BFA). Transport occurred either by direct fusion of preexisting transport intermediates with ER/Golgi intermediates, or it occurred as a BFA-sensitive and most likely COP I-mediated step. Direct fusion of ER/Golgi intermediates with cisternal membranes of the Golgi stack was not observed under these conditions.  相似文献   

19.
The coat protein II (COPII)–coated vesicular system transports newly synthesized secretory and membrane proteins from the endoplasmic reticulum (ER) to the Golgi complex. Recruitment of cargo into COPII vesicles requires an interaction of COPII proteins either with the cargo molecules directly or with cargo receptors for anterograde trafficking. We show that cytosolic phosphatidic acid phospholipase A1 (PAPLA1) interacts with COPII protein family members and is required for the transport of Rh1 (rhodopsin 1), an N-glycosylated G protein–coupled receptor (GPCR), from the ER to the Golgi complex. In papla1 mutants, in the absence of transport to the Golgi, Rh1 is aberrantly glycosylated and is mislocalized. These defects lead to decreased levels of the protein and decreased sensitivity of the photoreceptors to light. Several GPCRs, including other rhodopsins and Bride of sevenless, are similarly affected. Our findings show that a cytosolic protein is necessary for transit of selective transmembrane receptor cargo by the COPII coat for anterograde trafficking.  相似文献   

20.
Coat protein complex II (COPII) is a multi-subunit protein complex responsible for the formation of membrane vesicles at the endoplasmic reticulum. The assembly of this complex on the endoplasmic reticulum membrane needs to be tightly regulated to ensure efficient and specific incorporation of cargo proteins into nascent vesicles. Recent studies of a genetic disease affecting COPII function, and a structural analysis of COPII subunit interactions emphasize the central role of the Sec23 subunit in COPII coat assembly. Similarly, the demonstration that Sec23 interacts physically and functionally with proteins involved in both vesicle tethering and the transport along microtubules indicates that the Sec23 subunit is crucially important in linking COPII vesicle formation to anterograde transport events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号