首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental atherosclerosis in rabbits was associated with increased aggregation of their platelets to arachidonic acid, and with increased generation of thromboxane A2 by their platelet-rich plasma. A heightened susceptibility of platelets to the anti-aggregatory action of prostacyclin against the ADP-induced aggregation was also observed. It is concluded that in advance atherosclerosis the platelet system is hypersensitive to biologically active metabolites of arachidonic acid.  相似文献   

2.
Obesity, diabetes, hyperlipidaemia and age are conditions predisposing to atheroscleorosis and arterial occlusion. Recently it has been claimed that increased synthesis of thromboxane A2 by platelets and decreased synthesis of prostacyclin (PGI2) by blood vessels play an important role. The “Zucker” rat, a genetically obese animal with hyperlipidaemia, hyperinsulinaemia and normoglycaemia was used to study platelet aggregation, thromboxane (TXB2) production and aortic PGI2 synthesis. Two age groups (6–8 months and 14–16 months old) and their homozygote lean controls were used. In the obese rats no increased aggregation was found with ADP, arachidonic acid and collagen. On the contrary platelets from young fatty rats were less sensitive to ADP than platelets from lean young animals. An increase in platelet sensitivity to aggregating agents with age was observed, especially in the obese rats. TXB2 measured in platelet rich plasma after exposure to ADP, arachidonic acid, arachidonic acid plus ADP and collagen was similar in the fatty and lean animals.Production of PGI2 from incubated aortic rings was lowest in young lean animals. No differences existed between the other groups of rats studied. Insulin added to aortic rings had no influence on PGI2 production. It is concluded that age rather than obesity, hyperlipidaemia or hyperinsulinaemia may cause platelet hyperresponsiveness to aggregating agents. Thromboxane and plateletaggregation do not closely correlate. PGI2 production is not reduced by metabolic alterations, thought to predispose to atherosclerosis.  相似文献   

3.
Clausine-D inhibited concentration-dependently the aggregation and release of washed rabbit platelets induced by arachidonic acid and collagen, without affecting those induced by U46619, PAF and thrombin. The IC50 values of clausine-D on arachidonic acid-and collagen-induced platelet aggregation were calculated to be 9.0±1.1 and 58.9±0.9 μM, respectively. Thromboxane B2 and prostaglandin D2 formation in platelets caused by arachidonic acid were also suppressed. Clausine-D inhibited increased intracellular concentration of calcium in platelets caused by arachidonic acid and collagen, and also abolished the generation of inositol monophosphate caused by arachidonic acid, but not that by collagen U46619, PAF and thrombin. In human citrated platelet-rich plasma, clausine-D inhibited the secondary phase, but not the primary phase, of aggregation induced by epinephrine and ADP. These results indicate that the antiplatelet effect of clausine-D is due to inhibition of the formation of thromboxane A2.  相似文献   

4.
Soluble elastin, prepared from insoluble elastin by treatment with oxalic acid or elastase, was found to inhibit the formation of thromboxane B2 both from [1-14C]arachidonic acid added to washed platelets and from [1-14C]arachidonic acid in prelabeled platelets on stimulation with thrombin. In both systems, the formation of 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) was accelerated. Oxalic acid-treated soluble elastin st 1 and 10 mg/ml inhibited the formation of thromboxane B2 from exogenously supplied arachidonic acid 21 and 59%, respectively, and the formation of thromboxane B2 in prelabeled platelets stimulated by thrombin 44 and 94%, respectively. These concentrations of elastin increased the formation of 12-HETE from exogenously supplied arachidonic acid about 3.4- and 7.3-times, respectively. Almost all the added arachidonic acid was converted to metabolites. In prelabeled platelets, soluble elastin at 1 and 10 mg/ml increased the formation of 12-HETE stimulated by thrombin about 1.3- and 2.8-times, respectively, and inhibited the thrombin-induced total productions of thromboxane B2 (12-hydroxy-5,8,10-heptadecatrienoic acid (12-HETE) and free arachidonic acid by 26 and 25%, respectively. Elastase-treated digested elastin also inhibited the formation of thromboxane B2 and stimulated the formation of 12-HETE in prelabeled platelets stimulated by thrombin. This inhibitory action of elastin was not replaced by desmosine. The level of cAMP in platelets was not affected by soluble elastin. Soluble elastin was also found to inhibit platelet aggregation induced by thrombin. However, the inhibitory action of soluble elastin on platelet aggregation cannot be explained by inhibition of thromboxane B2 formation by the elastin.  相似文献   

5.
Vitamin E (α-tocopherol) and tocopherol acetate produced a slightly increased amount of thromboxane in treated compared to untreated platelets. In tocopherol acetate-treated platelets significantly more lipoxygenase products were produced. α-tocopherol induced an increased, but not significant, production of thromboxane B2 during blood clotting. α-tocopherol was not found to affect platelet phospholipase activity as determined by its effect on the release of labelled arachidonic acid from platelet phospholipids by challenging the platelets with calcium ionophore A23,187. α-tocopherol potentiated the incorporation of labelled arachidonate in the platelet phospholipids. Inspite of having no effect on the arachidonic acid cascade in platelets, α-tocopherol inhibited aggregation induced by several aggregating agents including A23,187. Inhibition of aggregation may be explained by the ability of α-tocopherol to inhibit intracellular mobilization of sequestered calcium from the dense tubular system to the cytoplasm.  相似文献   

6.
We have investigated whether exposure of human platelets to elevated concentrations of linoleic acid, the principal dietary polyunsaturate, would influence platelet thromboxane A2 release. Platelets were incubated with albumin-bound linoleic acid at 30°C for 24 h, with prostaglandin E1 added to prevent aggregation. The linoleic acid supplemented platelets released, on averaged, 50% less thromboxane A2 in response to stimulation with thrombin than corresponding control platelets. Other fatty acids were without appreciable effect. The inhibition of thrombin-stimulated thromboxane A2 release was dependent on the time and temperature of incubation, as well as on the concentration of added linoleic acid. Supplementation increased the amount of linoleic acid in the platelet phospholipids, but the arachidonic acid content of the phospholipids was reduced. [1-14C]Linoleic acid was not converted to arachidonic acid by the platelets. Linoleic acid was released exclusively form the inositol phosphoglycerides when the enriched platelets were stimulated with thrombin. The linoleate-enriched platelets converted less [1-14C]arachidonic acid to all prostaglandin products, suggesting that the platelet cyclooxygenase was partially inhibited.  相似文献   

7.
Oxidative stress has been strongly implicated in pathological processes. Isoketals are highly reactive γ-ketoaldehydes of the isoprostanes pathway of free radical-induced peroxidation of arachidonic acid that are analogous to cyclooxygenase-derived levuglandins. Because aldehydes, that are much less reactive than isoketals, have been shown to trigger platelet activation, we investigated the effect of one isoketal (E2-IsoK) on platelet aggregation. Isoketal potentiated aggregation and the formation of thromboxane B2 in platelets challenged with collagen at a concentration as low as 1 nM. Moreover, the potentiating effect of 1 nM isoketal on collagen-induced platelet aggregation was prevented by pyridoxamine, an effective scavenger of γ-ketoaldehydes. Furthermore, we provide evidence for the involvement of p38 mitogen-activated protein kinase in isoketal-mediated platelet priming, suggesting that isoketals may act upstream the activation of collagen-induced cytosolic phospholipase A2. Additionally, the incubation of platelets with 1 nM isoketal led to the phosphorylation of cytosolic phospholipase A2. The cytosolic phopholipase A2 inhibitors AACOCF3 and MAFP both fully prevented the increase in isoketal-mediated platelet aggregation challenged with collagen. These results indicate that isoketals could play an important role in platelet hyperfunction observed in pathological states such as atherosclerosis and thrombosis through the activation of the endogenous arachidonic acid cascade.  相似文献   

8.
Phospholipase A2 has a biphasic action upon the aggregation of rat platelets. In the first phase, occurring after shorter incubation periods with the enzyme, aggregation is enhanced. Longer incubation periods lead to an inhibition of the aggregation. The first phase disappears after the addition of indomethacin whereas the second phase persists. Incubation of platelets with phospholipase A2 leads to serotonin release. Prostaglandins are formed without platelet aggregation. Whereas the same effects occurred at the high dose of phospholipase A2 when platelets of essential fatty acid deficient rats were used, a difference was seen at the lower dose.It is concluded that in the first phase, arachidonic acid is liberated and transformed into aggregation inducing intermediates which are formed in the prostaglandin synthesis. In the second phase, changes may occur in the outer membrane which lead to a diminished sensitivity to aggregating agents.  相似文献   

9.
The present study has investigated the influence of agents which elevate intracellular levels of endogenous platelet adenosine 3′5′-cyclic monophosphate (cyclic AMP), and the effect of the exogenous cyclic AMP analog, dibutyryl cyclic AMP, on the conversion of 14C-arachidonic acid by washed platelets. Prostaglandin E1 (PGE1), PGE1 with theophylline, or dibutyryl cyclic AMP incubated with washed platelets prevented arachidonic acid induced platelet aggregation, but had no effect on the conversion of arachidonic acid to 12L-hydroxy-5,8,10, 14-eicosatetraenoic acid (HETE), 12L-hydroxy-5,8,10 heptadecatrienoic acid (HHT), or thromboxane B2. Ultrastructural studies of the platelet response revealed that agents acting directly or indirectly to increase the level of cyclic AMP inhibited the action of arachidonic acid on washed platelets and prevented internal platelet contraction as well as aggregation. The influence of PGE1 with theophylline, and dibutyryl cyclic AMP on the thrombin induced release of 14C-arachidonic acid from platelet membrane phospholipids was also investigated. These agents were found to be potent inhibitors of the thrombin stimulated release of arachidonic acid from platelet phospholipids, due most likely to an inhibition of platelet phospholipase A activity. The results show that dibutyryl cyclic AMP and agents which elevate intracellular cyclic AMP levels act to inhibit platelet activation at two steps 1) internal contraction and 2) release of arachidonic acid from platelet phospholipids.  相似文献   

10.
Dog platelets challenged with arachidonic acid fail to aggregate but synthesize a substance which aggregates rabbit and human platelets, this aggregation being suppressed by dibutyryl cyclic AMP. The aggregating substance contracts strips of rabbit aorta and of coeliac and mesenteric arteries, is soluble in diethyl ether, has a half-life of about 40 seconds at 37°C and of 100 seconds at 22°C. Its generation is blocked by various inhibitors of prostaglandin biosynthesis. The thromboxane A2 synthetase inhibitor imidazole and its analogue benzimidazolamine also suppress generation of vessel contracting activity in incubates of dog platelets and prostaglandin H2. Since dog platelets also transform prostaglandin H2 into thromboxane A2 their failure to aggregate, when stimulated by arachidonic acid or by prostaglandin H2, is not due to lack of thromboxane synthesizing ability.  相似文献   

11.
The stimulation by ADP or arachidonic acid of the aggregation of human platelets in plasma was inhibited by 4-hydroxynonenal (HNE). This reduction of aggregation was time related, and was increased by prolonged preincubation of the platelets with the aldehyde. HNE was more potent than its homologue 4-hydroxypentenal (HPE). HNE was less active in decreasing the aggregation induced by calcium ionophore A23187 or collagen in comparison with ADP. HNE was inactive against aggregation of platelet-rich plasma (PRP) stimulated by thrombin whereas it potently inhibited the aggregation of washed platelets in response to both thrombin and collagen. Platelets were found to degrade HNE, and mechanisms additional to covalent binding to glutathione are indicated by the results obtained. The aldehydes, including HNE, generated by platelets originated principally from arachidonic acid metabolism.  相似文献   

12.
Incubation of human platelets (in the form of platelet rich plasma or washed platelet suspension) with sodium merthiolate (ethyl mercuric salicylate inhibiting the arachidonic acid incorporation into phospholipids) induces their irreversible aggregation, which is accompanied by TxB2 synthesis. The merthiolate-induced aggregation has a lag-period of 0.5-10 min, whose magnitude is inversely correlated with the merthiolate concentration. The concentration dependencies of the rate of the merthiolate-induced and arachidonate-induced aggregation are threshold ones; the Hill coefficients are more than 30. The merthiolate-induced aggregation occurs in two phases: a slow phase which is independent of the arachidonic acid cyclooxygenase metabolism and a fast phase which is fully blocked by indomethacin. This aggregation is inhibited by PGE1 and ajoene (an inhibitor of the fibrinogen interaction with the fibrinogen receptor, GPIIb/IIIa). Quantitative and qualitative analyses of the experimental data were performed, using a model which took account of: (a) increase in the concentration of free endogenous arachidonic acid resulting from the inhibition by merthiolate of the arachidonic acid re-incorporation into phospholipids, and (b) existence of a threshold intracellular arachidonic acid concentration needed for the irreversible aggregation of platelets.  相似文献   

13.
The inhibitory mechanism of high levels of exogenously added arachidonic acid on activation of washed human platelets was investigated. While low levels of arachidonic acid (5-10 microM) induced aggregation, ATP secretion and increase in cytoplasmic free Ca2+ concentration (first phase of activation), these platelet responses did not occur significantly at high concentrations (30-50 microM). However, much higher concentrations than 80 microM again elicited these responses (second phase). The first phase of platelet activation was inhibited by cyclooxygenase inhibitor, indomethacin, whereas the second one was independent of such treatment. Thromboxane B2 was produced dose-dependently until reaching a plateau at arachidonic acid concentrations higher than 20 microM, irrespective of the lack of aggregation and secretion at high concentrations. After that the amount of free arachidonic acid which remained unmetabolized in platelets gradually increased. High concentrations of arachidonic acid as well as other polyunsaturated fatty acids caused desensitization of platelets in response to U46619, and also depressed the specific [3H]U46619-binding to the receptor as well as other polyunsaturated fatty acids. The amount free arachidonic acid needed in platelets to suppress [3H]U46619 binding corresponded to that needed to inhibit platelet aggregation. Furthermore, arachidonic acid dose-dependently induced fluidization of lipid phase of platelet membranes as detected by 1,6-diphenyl-1,3,5-hexatriene. These results suggest that the inhibition of platelet response by high levels of arachidonic acid can be attributed to interference with endoperoxide/thromboxane A2 binding to the receptor, probably due to perturbation of the membrane lipid phase due to excess amounts of free arachidonic acid remaining in the membranes.  相似文献   

14.
We examined platelet aggregation and serotonin release, induced by less than 60 μM arachidonic acid, using washed platelet suspensions in the absense of albumin. The concentration of arachidonic acid use did not cause platelet lysis. Platelet responses induced by less than 20 μM arachidonic acid were inhibited by aspirin, whereas those induced by above 30 μM arachidonic acid were not inhibited, even by both aspirin and 5,8,11,14-eicosatetraynoic acid. Although phosphatidic acid and 1,2-diacylglcerol increased after the addition of arachidonic acid in aspirin-treated platelets, the amounts were not parallel to platelet aggregation. Oleic, linoleic and linolenic acids also induced platelet responses, while palmitic, stearic and arachidic acids did not. EDTA, dibutyryl cyclic AMP, apyrase and creatine phosphate / creatin phosphokinase brought about almost the same effects in platelet responses induced by the unsaturated fatty acids, other than arachodinic acid, as those induced by 40 μM arachodonic acid. These results suggest that the mechanism of the actions of more than 30 μM arachodinic acid on platelets is the same as that of the other unsaturated fatty acids and is independent of prostaglandin endoperoxides, thromboxane A2 and, perhaps, phosphatidic acid and 1,2-diacylglycerol.  相似文献   

15.
Sulfhydryl agents (mercaptoethanol, thioglycerol, dithiotreitol, and sodium diethyldithiocarbamate) prevented aggregation of rabbit platelets and the accompanying generation of pharmacologically active substances due to arachidonic acid. Inhibition was also found after administration of the antagonists. This antagonism was suppressed if the inhibitors were removed from the platelet suspension by washing procedures, whereas inhibition by indomethacin was irreversible. Amino-thiol reagents either failed to antagonize the effects of AA or potentiated them. CuCl2 increased the amounts of pharmacologically active substances generated in incubates of intact platelets with arachidonic acid, and reversed the inhibition due to thiol agents, but did not interfere with inhibition by indomethacin. Platelets suspended in Tyrode solution generated unstable pharmacologically active substances upon incubation with arachidonic acid ; stability of these substances could be maintained at 4°C. Generation of this temperature — sensitive material was inhibited by indomethacin and by thiol agents. Interference with a copper-containing component of PG synthetase or reduction of an intermediate lipoperoxide appear as two possible mechanisms of action of thiol agents.  相似文献   

16.
The microsomal fraction of dog aortas inhibited human platelet aggregation induced by arachidonic acid, ADP, or thrombin. When aortic microsomes were added to a preparation of irreversibly aggregated platelets, the aggregates dispersed after 4–6 minutes. The fact that aortic microsomes inhibit platelet aggregation induced by ADP suggests that its effect is probably on the cellular function of platelets and not in direct competition against thromboxane A2.  相似文献   

17.
Antiplatelet effect of butylidenephthalide   总被引:1,自引:0,他引:1  
Butylidenephthalide inhibited, in a dose-dependent manner, the aggregation and release reaction of washed rabbit platelets induced by collagen and arachidonic acid. Butylidenephthalide also inhibited slightly the platelet aggregation induced by PAF and ADP, but not that by thrombin or ionophore A23187. Thromboxane B2 formation caused by collagen, arachidonic acid, thrombin and ionophore A23187 was in each case markedly inhibited by butylidenephthalide. Butylidenephthalide inhibited the aggregation of ADP-refractory platelets, thrombin-degranulated platelets, chymotrypsin-treated platelets and platelets in the presence of creatine phosphate/creatine phosphokinase. Its inhibition of collagen-induced aggregation was more marked at lower Ca2+ concentrations in the medium. The aggregability of platelets inhibited by butylidenephthalide could be recovered after the washing of platelets. In human platelet-rich plasma, butylidenephthalide and indomethacin prevented the secondary aggregation and blocked ATP release from platelets induced by epinephrine. Prostaglandin E2 formed by the incubation of guinea-pig lung homogenate with arachidonic acid could be inhibited by butylidenephthalide, indomethacin and aspirin. It is concluded that the antiplatelet effect of butylidenephthalide is mainly due to an inhibitory effect on cyclo-oxygenase and may be due partly to interference with calcium mobilization.  相似文献   

18.
Recently two local hormones, thromboxane A2 (TXA2) and prostacyclin (PGI2) have been discovered. These hormones are labile metabolites of arachidonic acid. TXA2 is generated by blood platelets, while PGI2 is produced by vascular endothelium. TXA2 is a potent vasoconstrictor. It also initiates the release reaction, followed by platelet aggregation. PGI2 is a vasodilator, especially potent in coronary circulation. It also inhibits platelet aggregation by virtue of stimulation of platelet adenyl cyclase. Common precursors for both hormones are cyclic endoperoxides PGG2 and PGH2, being formed by cyclooxygenation of arachidonic acid. This last enzymic reaction is more efficient in platelets than in vascular endothelium, and therefore the generation of PGI2 by vasuclar wall is accelerated by an interaction between platelets and endothelial cells. During this interaction platelets supply the endothelial PGI2 synthetase with their cyclic endoperoxides. The newly formed PGI2 repels the platelets from the intima. When PGI2 synthetase is irreversibly inactivated by low concentration of lipid peroxides, then the platelets are not rejected but stick to the endothelium, generate TXA2 and mature thrombi are formed. A balance between formation and release of PGI2, TXA2 and/or cyclic endoperoxides in circulation is of utmost importance for the control of intra-arterial thrombi formation and possibly plays a role in the pathogenesis of atherosclerosis.  相似文献   

19.
Aspirin inhibits thromboxane A2 (TxA2) production whereas its salicylate moiety inhibits 12-hydroxy-eiosatetraenoic acid (12-HETE) production in the platelet. The significance of the latter effect on platelet function is unclear. We examined the effects of aspirin and salicylate on (i) platelet/ collagen adhesion using 3H-adenine-labelled human platelets and collagen- coated discs, (ii) platelet aggregation induced by thrombin, collagen, ADP and arachidonic acid, and (iii) platelet TxA2 and 12-HETE synthesis as measured by radioimmunoassay and high pressure liquid chromatography respectively. Aspirin (50 μM) decreased platelet aggregation and increased platelet adhesion. The decrease in aggregation was associated with inhibition of TxA2 production and the increase in adhesion was associated with enhanced 12-HETE production. Salicylate had the opposite effects. Platelet aggregation was increased and platelet adhesion decreased. The increased aggregation was associated with enhanced TxA2 production and the decrease in aggregation was associated with inhibition of 12-HETE production. These observations suggest that 12-HETE facilitates platelet adhesion which can be altered by salicylate treatment.  相似文献   

20.
Utilization of arachidonic acid by human platelets is increased when the fatty acid content of serum albumin is increased as well. Platelet aggregation induced by arachidonic acid and by low concentrations of thrombin is thus potentiated, suggesting that platelet responsiveness to aggregating agents is influenced by the plasma content in free fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号