首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
《Process Biochemistry》2014,49(8):1223-1230
Acetoin production by Bacillus amyloliquefaciens was used as a model of product feedback to develop a strategy to enhance the production of acetoin. To enhance the resistance of B. amyloliquefaciens to acetoin, an acetoin-tolerant mutant E-11 was screened by using adaptive evolution with acetoin stress as the selection pressure. When compared with the parent FMME044, the mutant E-11 exhibited superior fermentation performance as follows: (1) the mutant E-11 exhibited increased tolerance to high concentration of acetoin, and the specific growth rate was 265.2% higher than that of the parent FMME044 in medium containing 80 g/L acetoin; (2) acetoin production by the mutant E-11 reached 71.5 g/L at 44 h when cultured in a 7-L fermentor with 173 g/L glucose, and the acetoin concentration and productivity of the mutant E-11 were 39.6% and 14.4% higher than those of the parent FMME044, respectively; (3) the unsaturated fatty acid contents in the mutant E-11 were 64.8%, 37.8%, and 18.4% higher than those in the parent FMME044 when cultured in 0, 40, and 60 g/L acetoin, whereas the saturated fatty acid contents in the mutant E-11 were 9.5%, 13.9%, and 14.1% lower than those in the parent FMME044, respectively.  相似文献   

4.
许多微生物在糖酵解过程中能够将糖类转化为乙偶姻来避免过度酸化。乙偶姻能够调节NAD+/NADH的比率并存储碳源。此外,乙偶姻作为一种具有特殊奶油香气的食用香料,广泛应用于食品,烟草、酒类和化妆品行业。近些年研究发现许多植物根际促生菌能够通过产生乙偶姻激活植物对外界环境压力的抗性,激活植物系统抗性,抵御病原菌的侵袭。乙偶姻还可以促进植物生长,提高产量。另外,乙偶姻还是调节根际促生菌与宿主植物相互作用的信号分子。简述乙偶姻的生物合成路径及其调控,并介绍乙偶姻在食品、医药、化工、化妆品、植物保护、生物燃料等方面的应用。  相似文献   

5.
6.
A recent study indicated that Bacillus subtilis catabolizes acetoin by enzymes encoded by the acu gene cluster (F. J. Grundy, D. A. Waters, T. Y. Takova, and T. M. Henkin, Mol. Microbiol. 10:259-271, 1993) that are completely different from those in the multicomponent acetoin dehydrogenase enzyme system (AoDH ES) encoded by aco gene clusters found before in all other bacteria capable of utilizing acetoin as the sole carbon source for growth. By hybridization with a DNA probe covering acoA and acoB of the AoDH ES from Clostridium magnum, genomic fragments from B. subtilis harboring acoA, acoB, acoC, acoL, and acoR homologous genes were identified, and some of them were functionally expressed in E. coli. Furthermore, acoA was inactivated in B. subtilis by disruptive mutagenesis; these mutants were impaired to express PPi-dependent AoDH E1 activity to remove acetoin from the medium and to grow with acetoin as the carbon source. Therefore, acetoin is catabolized in B. subtilis by the same mechanism as all other bacteria investigated so far, leaving the function of the previously described acu genes obscure.  相似文献   

7.
Dihydrolipoamide dehydrogenase (DHLDH), dihydrolipoamide acetyltransferase (DHLTA), and acetoin: 2,6-dichlorophenolindophenol oxidoreductase (Ao:DCPIP OR) were purified from acetoin-grown cells of Pelobacter carbinolicus. DHLDH had a native Mr of 110,000, consisted of two identical subunits of Mr 54,000, and reacted only with NAD(H) as a coenzyme. The N-terminal amino acid sequence included the flavin adenine dinucleotide-binding site and exhibited a high degree of homology to other DHLDHs. DHLTA had a native Mr of greater than 500,000 and consisted of subunits identical in size (Mr 60,000). The enzyme was highly sensitive to proteolytic attack. During limited tryptic digestion, two major fragments of Mr 32,500 and 25,500 were formed. Ao:DCPIP OR consisted of two different subunits of Mr 37,500 and 38,500 and had a native Mr in the range of 143,000 to 177,000. In vitro in the presence of DCPIP, it catalyzed a thiamine pyrophosphate-dependent oxidative-hydrolytic cleavage of acetoin, methylacetoin, and diacetyl. The combination of purified Ao:DCPIP OR, DHLTA, and DHLDH in the presence of thiamine pyrophosphate and the substrate acetoin or methylacetoin resulted in a coenzyme A-dependent reduction of NAD. In the strictly anaerobic acetoin-utilizing bacteria P. carbinolicus, Pelobacter venetianus, Pelobacter acetylenicus, Pelobacter propionicus, Acetobacterium carbinolicum, and Clostridium magnum, the enzymes Ao:DCPIP OR, DHLTA, and DHLDH were induced during growth on acetoin, whereas they were absent or scarcely present in cells grown on a nonacetoinogenic substrate.  相似文献   

8.
9.
10.
11.
12.
13.
E2 (dihydrolipoamide acetyltransferase) and E3 (dihydrolipoamide dehydrogenase) of the Clostridium magnum acetoin dehydrogenase enzyme system were copurified in a three-step procedure from acetoin-grown cells. The denatured E2-E3 preparation comprised two polypeptides with M(r)s of 49,000 and 67,000, respectively. Microsequencing of both proteins revealed identical amino acid sequences. By use of oligonucleotide probes based on the N-terminal sequences of the alpha and beta subunits of E1 (acetoin dehydrogenase, thymine PPi dependent), which were purified recently (H. Lorenzl, F.B. Oppermann, B. Schmidt, and A. Steinbüchel, Antonie van Leeuwenhoek 63:219-225, 1993), and of E2-E3, structural genes acoA (encoding E1 alpha), acoB (encoding E1 beta), acoC (encoding E2), and acoL (encoding E3) were identified on a single ClaI restriction fragment and expressed in Escherichia coli. The nucleotide sequences of acoA (978 bp), acoB (999 bp), acoC (1,332 bp), and acoL (1,734 bp), as well as those of acoX (996 bp) and acoR (1,956 bp), were determined. The amino acid sequences deduced from acoA, acoB, acoC, and acoL for E1 alpha (M(r), 35,532), E1 beta (M(r), 35,541), E2 (M(r), 48,149), and E3 (M(r), 61,255) exhibited striking similarities to the amino acid sequences of the corresponding components of the Pelobacter carbinolicus acetoin dehydrogenase enzyme system and the Alcaligenes eutrophus acetoin-cleaving system, respectively. Significant homologies to the enzyme components of various 2-oxo acid dehydrogenase complexes were also found, indicating a close relationship between the two enzyme systems. As a result of the partial repetition of the 5' coding region of acoC into the corresponding part of acoL, the E3 component of the C. magnum acetoin dehydrogenase enzyme system contains an N-terminal lipoyl domain, which is unique among dihydrolipoamide dehydrogenases. We found strong similarities between the AcoR and AcoX sequences and the A. eutrophus acoR gene product, which is a regulatory protein required for expression of the A. eutrophus aco genes, and the A. eutrophus acoX gene product, which has an unknown function, respectively. The aco genes of C. magnum are probably organized in one single operon (acoABXCL); acoR maps upstream of this operon.  相似文献   

14.
15.
16.
Under optimal conditions, Torulopsis colliculosa NRRL 172 and Enterobacter B-87 (ATCC 27613) produced 50 to 500 mg of acetoin per g of substrate. Whereas cane molasses, gur, glucose, and sucrose were suitable substrates for acetoin production, lactose and mannitol supported very good growth but yielded little or no acetoin. Production of acetoin increased with increases in the concentration of glucose, yeast extract, and peptone. Combination of substrates and intermittent feeding of substrate failed to increase the yields.  相似文献   

17.
18.
Metabolism of poly-beta-hydroxybutyrate and acetoin in Bacillus cereus   总被引:7,自引:2,他引:5  
Kominek, Leo A. (University of Illinois, Urbana), and H. Orin Halvorson. Metabolism of poly-beta-hydroxybutyrate and acetoin in Bacillus cereus. J. Bacteriol. 90:1251-1259. 1965.-The synthesis of poly-beta-hydroxybutyrate (PHB) in Bacillus cereus strain T begins after the cessation of logarithmic growth. Its accumulation is preceded by the formation of acetoacetyl coenzyme A reductase, an enzyme used for its biosynthesis. Exogenous acetic acid present in the medium owing to incomplete glucose oxidation serves as the carbon source for polymer formation during the initial stages of its synthesis. Pyruvic acid is converted to acetoin by an enzyme system that is formed during vegetative growth. The formation of this enzyme system is dependent on a low pH in the medium. As the cells enter the sporulating stage, they lose the ability to form acetoin. The acetoin that accumulates is utilized via the 2,3-butanediol cycle which begins to function late in the sporulation stage. This cycle generates acetic acid which is used for PHB synthesis and is also oxidized to carbon dioxide. PHB accumulation reaches a maximum just prior to the formation of spores, and it is degraded during the process of sporulation. The effect of sporulation inhibitors and pH on PHB and acetoin metabolism are discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号