首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Can tolerance traits impose selection on herbivores?   总被引:6,自引:0,他引:6  
Plant tolerance reduces the fitness consequences of herbivore and natural enemy damage, while resistance reduces the amount of damage suffered. In contrast to resistance, tolerance is often assumed to not affect herbivore performance and evolution. Evidence from the literature, however, suggests that it is possible for plant tolerance to affect herbivore performance and evolution, and potentially plant–herbivore coevolution. First, for cases when genetic correlations between resistance and tolerance are due to pleiotropy, the genes and loci for tolerance and resistance are the same, and as such both traits will affect herbivore performance directly. Second, it is possible that the physiological basis and mechanisms of plant tolerance – for example, changes in plant physiology and resource allocation – directly alter herbivore fitness characters. In this paper, I review the evidence for these potential effects of plant tolerance on herbivore performance, and suggest straightforward experiments to evaluate these possibilities. More generally, I propose that this untested assumption is constraining our view of plant–herbivore coevolution.  相似文献   

2.
Two questions dominate current thinking on plant-herbivore interactions: what is the impact of feeding by herbivores on the distribution and abundance of plants; and what is the role of herbivory as an agency of natural selection, leading to differential performance of host plant genotypes? These two questions come together in discussions of how the evolutionary consequences of herbivory are manifest at the population and ecosystem levels.  相似文献   

3.
Increased fire frequency can significantly erode both soil properties and plant–pollinator interactions affecting plant reproductive success but they have seldom been assessed simultaneously. Here, we evaluate soil properties, pollinator assemblage and the reproductive success of two native Fabaceae herbs, Desmodium uncinatum and Rhynchosia edulis, growing in unburned, low and high fire frequency sites of Chaco Serrano across two consecutive years. Desmodium uncinatum is outcrossing with a high dependence on pollinators, whereas R. edulis is autogamous and completely independent of pollinators. We found that soil water content, nitrates and electrical conductivity significantly decreased in low and high fire frequency sites. Pollinator richness and composition visiting each plant species was similar across all fire frequency scenarios. However, fruit set of the exogamous D. uncinatum was strongly reduced in frequently burned sites, whereas fruit set of the autogamous R. edulis showed no significant changes. In both species, the probability of setting fruits was positively related to soil quality across fire frequency scenarios, implying that decreased reproduction was mainly driven by limitation of abiotic resources shaped by increased fire frequency. Because the pollinator-dependent D. uncinatum has a higher reproductive cost, reduced soil quality induced by fire frequency had stronger effects on its reproduction. Chronic reduction of sexual reproduction in frequently burned sites with depleted soils will limit population recruitment with negative consequences on long-term plant population persistence.  相似文献   

4.
5.
Biodiversity has been a focal aim of environmental protection since the Rio conference, but only with the beginning of the new millennium did soil biodiversity become an important aspect of international policy. Edaphic fauna play a key role in many soil functions, such as organic matter decomposition, humus formation and nutrient element cycling; moreover, affect the porosity, aeration, infiltration and distribution of organic matter in soil horizons, modifying soil structure and improving its fertility. The ecosystem services provided by soil animals are becoming progressively lost due to agricultural practice intensification, which causes a reduction in both abundance and taxonomic diversity of soil communities. In the present study, a permanent grassland habitat was studied in order to evaluate its potential as a soil biodiversity reservoir in agroecosystems. Grassland samples were compared with samples from a semi-natural woodland area and an arable land site. Microarthropod abundances, Acari/Collembola ratio (A/C), Shannon diversity index (H′) and evenness index (E) were calculated. QBS-ar index was used in order to evaluate soil biological quality. Microarthropod communities of the three land use typologies differed in both the observed groups and their abundance. Steady soil taxa characterized both woodland and grassland soils, whereas their abundances were significantly higher in woodland soil. Taxon diversity and soil biological quality in the grasslands did not differ from the woodland samples. The microarthropod community in the arable land showed a reduction both in taxa numbers and soil biological quality compared with the other sites. Soil biological quality and edaphic community composition highlighted the importance of grassland habitats in the protection of soil biodiversity.  相似文献   

6.
Fungi are vital within forest ecosystems through their mycorrhizal relationships with trees, and as the main agents of wood decomposition and thus carbon and nutrient cycling. Globally, forests are becoming increasingly fragmented, creating forest patches that are isolated, reduced in area, and exposed at edges. Edges are often ecologically distinct from the forest interior due to their exposure to the matrix habitat. This exposure can result in altered microclimatic conditions and flows of biotic and abiotic materials such as spores or inorganic nitrogen, respectively.Although fungi are known to be affected by microclimate and nitrogen deposition, knowledge of forest edge effects on fungi is extremely limited; however, a consideration of the factors known to regulate fungal activity in combination with known biotic and abiotic edge effects implies that forest edges are likely to strongly influence fungi. These include responses of fungi to the altered microclimate and nitrogen levels at forest edges, at both the individual and community level; interactions with plants and animals that have been influenced by edges; above–belowground feedback between mycorrhizal fungi and host trees. The small body of existing research focuses on fruit body presence and distribution; fungal biomass and community composition in soil have been touched upon. Positive, negative and neutral edge responses have been found, the majority of studies finding a significant effect on some of the parameters measured. Generally, abundance of fruit bodies and biomass in the soil is lower at the forest edge.Understanding how fungi respond to edges is essential to a more complete knowledge of carbon and nitrogen cycling in forest edges, influence of mycorrhizal species on vegetation, and conservation of rare fungi. As edges become increasingly dominant landscape features it is vital to investigate processes within them, to understand ecosystem function at a landscape scale.  相似文献   

7.
Evolutionary Ecology - All adaptive alleles in existence today began as mutations, but a common view in ecology, evolution, and genetics is that non-neutral mutations are much more likely to be...  相似文献   

8.
This study investigated the acute effects of upper-body maximal dynamic contractions on maximal throwing speed with 0.55- and 4-kg medicine balls. It was hypothesized that heavy preloading would transiently improve throwing performance only when overcoming the heavier of the two loads. Twenty-three male volunteers were randomly allocated into experimental (n = 11) and control (n = 12) groups. Both groups performed initial and final seated medicine ball throws from the chest, and the maximal medicine ball speed was measured by means of a radar gun. Between the two measurements, the control group rested passively for 15 minutes, and the experimental group performed three sets of three-repetition maximum bench presses. For the 0.55-kg load, a 2 x 2 repeated-measures analysis of variance revealed no significant effect of time x group interaction (p = 0.22), as well as no significant time (p = 0.22) or group (p = 0.72) effects. In contrast, for the 4-kg load, a significant time x group interaction (p = 0.004) and a significant time (p = 0.035) but not group (p = 0.77) effect were observed. Analysis of simple main effects revealed that the experimental group significantly (8.3%; p < 0.01) improved maximal throwing speed with the 4-kg load. These results support our research hypothesis and suggest that the acute effects of heavy preloading on upper-body ballistic performance might be load specific. In a practical sense, our findings suggest that the use of upper-body heavy resistance exercise before ballistic throwing movements against moderate external loads might be an efficient training strategy for improving an athlete's upper-body explosive performance.  相似文献   

9.
Animal responses to global climate variation might be spatially inconsistent. This may arise from spatial variation in factors limiting populations' growth or from differences in the links between global climate patterns and ecologically relevant local climate variation. For example, the North Atlantic Oscillation (NAO) has a spatially consistent relation to temperature, but inconsistent spatial relation to snow depth in Scandinavia. Furthermore, there are multiple mechanistic ways by which climate may limit animal populations, involving both direct effects through thermoregulation and indirect pathways through trophic interactions. It is conceptually appealing to directly model the predicted mechanistic links. This includes the use of climate variables mimicking such interactions, for example, to use growing degree days (GDD) as a proxy for plant growth rather than average monthly temperature. Using a unique database of autumn body mass of 83331 domestic lambs from the period 1992–2007 in four alpine ranges in Norway, we demonstrate the utility of hierarchical, mechanistic path models fitted using a Bayesian approach to analyse explicitly predicted relationships among environmental variables and between lamb body mass and the environmental variables. We found large spatial variation in strength of responses of autumn lamb body mass to the NAO, to a proxy for plant growth in spring (the Normalized Difference Vegetation Index, NDVI) and effects even differed in direction to local summer climate. Average local temperature outperformed GDD as a predictor of the NDVI, whereas the NAO index in two areas outperformed local weather variables as a predictor of lamb body mass, despite the weaker mechanistic link. Our study highlights that spatial variation in strength of herbivore responses may arise from several processes. Furthermore, mechanistically more appealing measures do not always increase predictive power due to scale of measurement and since global measures may provide more relevant “weather packages” for larger scales.  相似文献   

10.
11.
This study assessed how the palatability of leaves of different age classes (young, intermediate and older) of Eucalyptus nitens seedlings varied with plant nutrient status, based on captive feeding trials with two mammalian herbivores, red-bellied pademelons (Thylogale billardierii), and common brushtail possums (Trichosurus vulpecula). Seedlings were grown under three nutrient treatments (low, medium and high), and we determined how palatability was related to chemical and physical characteristics of the leaves. Pademelons ate more older leaves than young and intermediate leaves for all treatments. This pattern was best explained by sideroxylonals (formylated phloroglucinol compounds known to deter herbivory by other marsupials), and/or essential oil compounds that were present in lower concentrations in older leaves. In the low-nutrient treatment, possums also ate more of the older leaves. However, in the medium- and high-nutrient treatments, possums ate more intermediate leaves than older leaves and showed a behavioural preference for young leaves (consuming younger leaves first) over intermediate and older leaves, in spite of high levels of sideroxylonals and essential oils. The young leaves did, however, have the highest nitrogen concentration of all the leaf age classes. Thus, either sideroxylonals and essential oils provided little or no deterrent to possums, or the deterrent was outweighed by other factors such as high nitrogen. This study indicates that mammalian herbivores show different levels of relative use and damage to leaf age classes at varying levels of plant nutrient status and, therefore, their impact on plant fitness may vary with environment.  相似文献   

12.
Environment and seedling community under isolated trees in pastures are different from those in the open pasture. The effect of the pasture trees on the soil nutrients and on the seedling growth were investigated. Seven isolated trees and eight plots were selected in two pastures of 12-yr and 32-yr old derived from a lowland rain forest with nutrient-rich soil at Los Tuxtlas, Mexico. The soil concentrations of total N, P Bray, K+, Na+, Ca2+ and Mg2+, plus others physical and chemical characteristics, were compared between the pasture trees and the open-pasture. An experiment was done to test the hypothesis that soil from under the pasture trees was better for seedling growth than soil from the open pasture. Seedlings of two native tree species and two domesticated species were grown in soil from the two different sites in a shade-house. The dry weight of the shoot and root/shoot ratio were compared. Only total N, P and Na+ differed slightly in concentrations between the sites, but did not promote more seedling biomass. It seems that the soil at this location is sufficiently nutrient-rich even in the open pastures and over-ride any effect of the pasture trees on nutrient availability.  相似文献   

13.
Plant-mediated soil legacy effects can be important determinants of the performance of plants and their aboveground insect herbivores, but, soil legacy effects on plant–insect interactions have been tested for only a limited number of host plant species and soils. Here, we tested the performance of a polyphagous aboveground herbivore, caterpillars of the cabbage moth Mamestra brassicae, on twelve host plant species that were grown on a set of soils conditioned by each of these twelve species. We tested how growth rate (fast- or slow-growing) and functional type (grass or forb) of the plant species that conditioned the soil and of the responding host plant species growing in those soils affect the response of insect herbivores to conditioned soils. Our results show that plants and insect herbivores had lower biomass in soils that were conditioned by fast-growing forbs than in soils conditioned by slow-growing forbs. In soils conditioned by grasses, growth rate of the conditioning plant had the opposite effect, i.e. plants and herbivores had higher biomass in soils conditioned by fast-growing grasses, than in soils conditioned by slow-growing grasses. We show that the response of aboveground insects to soil legacy effects is strongly positively correlated with the response of the host plant species, indicating that plant vigour may explain these relationships. We provide evidence that soil communities can play an important role in shaping plant–insect interactions aboveground. Our results further emphasize the important and interactive role of the conditioning and the response plant in mediating soil–plant–insect interactions.  相似文献   

14.
Wilschut  Rutger A.  van Kleunen  Mark 《Plant and Soil》2021,462(1-2):285-296
Plant and Soil - Drought events can alter the composition of plant and soil communities, and are becoming increasingly common and severe due to climate change. However, how droughts affect...  相似文献   

15.
16.
17.
Antagonistic/synergistic interactions among predators foraging on the same prey have been assumed to play a major role in shaping community structure. Studies in systems with multiple predator species have shown that the strength of these interactions may not be predictable and is largely dependent on individual behavioural traits, species density and habitat complexity. Although the association of prey consumption and satiation of a foraging predator has long been recognized, there has been relatively little research on how prey availability affects multiple predators’ effects. In this work, we present a framework to investigate the variation in two coexisting/competing predators’ effects on prey risk as affected by the prey availability rate. Functional responses by each predator species were first studied in single-predator treatments. Then, the intra- and inter-specific competition was investigated by employing additive and substitutative experimental designs to highlight the nature of multiple effects. Intra- and interspecific interactions were found to be similar and there was risk reduction, and risk enhancement for the prey at intermediate and high levels, respectively, according to the multiplicative risk model (MRM). The results indicated that when similar predators are concerned, the outcomes of MRM may vary according to the functional response curve of these predators. Thus, studies involving a wide range of prey densities are required to explore the nature of interactions. Moreover, this kind of experimental data can contribute to unravelling complexities in theoretical approaches by earlier studies and ultimately promote understanding the effect of multiple predators on prey population regulation.  相似文献   

18.
Doping of ZnO nanoparticles (NPs) is being used to increase their commercialization in the optical and semiconductor fields. This paper addresses whether doping with Al alters how ZnO NPs at nonlethal levels modifies the metabolism of soil-borne pseudomonads which are beneficial in performing bioremediation or promoting plant growth. The differences in X-ray diffraction (XRD) patterns, observed between commercial ZnO and Al-doped ZnO NPs indicated the aluminum was present as Al NPs. Both particles aggregated in the bacterial growth medium and formed colloids of different surface charges. They had similar effects on bacterial metabolism: rapid, dose-dependent loss in light output indicative of temporary toxicity in a biosensor constructed in Pseudomonas putida KT2440; increased production of a fluorescent pyoverdine-type siderophore, and decreased levels of indole acetic acid and phenazines in Pseudomonas chlororaphis O6. Solubilization of Zn and Al from the NPs contributed to these responses to different extents. These findings indicate that Al-doping of the ZnO NPs did not reduce the ability of the NPs to alter bacterial metabolism in ways that could influence performance of the pseudomonads in their soil environment.  相似文献   

19.
Plants show defensive responses after exposure to volatiles from neighbouring plants infested by herbivores. When a plant’s neighbours host only species of herbivores that do not feed on the plant itself, the plant can conserve energy by maintaining a low defence level. An intriguing question is whether plants respond differently to volatiles from plants infested by herbivores that pose greater or lesser degrees of danger. We examined the secretion of extrafloral nectar (EFN) in lima bean plants exposed to volatiles from cabbage plants infested by common cutworm, two-spotted spider mites, or diamondback moth larvae. Although the first two herbivore species feed on lima bean plants, diamondback moth larvae do not. As a control, lima bean plants were exposed to volatiles from uninfested cabbage plants. Only when exposed to volatiles from cabbage plants infested by spider mites did lima bean plants significantly increase their EFN secretion compared with the control. Increased EFN secretion can function as an indirect defence by supplying the natural enemies of herbivores with an alternative food source. Of the three herbivore species, spider mites were the most likely to move from cabbage plants to lima bean plants and presumably posed the greatest threat. Although chemical analyses showed differences among treatments in volatiles produced by herbivore-infested cabbage plants, which compounds or blends triggered the increased secretion of EFN by lima bean plants remains unclear. Thus, our results show that plants may tune their defence levels according to herbivore risk level.  相似文献   

20.
植物用于防御的资源有限,而那些具有生物防御的物种,其叶片可能会较少地用于其他类型的防御。我们比较了机械防御能力较弱,但具有花外蜜腺的植物,与没有花外蜜腺但叶片更有韧性的植物是否更不容易被取食。我们通过分析文献数据,调查有无花外蜜腺的植物被取食的情况。在巴西南部的热带稀树草原植被中,我们采集了6种热带植物的叶片数据,并测定了被取食情况和比叶面积。我们进一步评估了有无花外蜜腺的物种之间以及植物之间被取食情况和比叶面积的差异。为了检验动物取食与叶片韧性之间的关系,我们对单株平均被取食情况和平均叶片韧性进行了回归。研究结果表明,植物表现出不同程度的叶片损伤,但没有蚂蚁防御的植物因被取食造成的叶面积损失最大。不同植物的机械防御水平也不相同。无花外蜜腺的植株更坚韧,比叶面积值更小。虽然无花外蜜腺的植物有更多的坚硬叶片,但这种机械防御不足以损害和/或减少食草动物的取食,这表明由蚂蚁形成的生物防御可能比用于与叶片适口性相关的机械防御更有效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号