共查询到20条相似文献,搜索用时 0 毫秒
1.
Huang TT 《Free radical research》2012,46(8):951-958
Changes in the intracellular and extracellular redox balance have been correlated with cell fate decisions in terms of proliferation versus differentiation, entering versus existing cell cycle and survival versus cell death. Adult hippocampal neurogenesis has been correlated with neuronal plasticity of learning and memory; however, the process is exquisitely sensitive to changes in redox balance. Cranial irradiation is an effective modality in treating brain tumours but often leads to deficits in hippocampus-related learning and memory, which is most likely due to sustained elevation of oxygen free radical production and suppression of hippocampal neurogenesis. The subcellular redox environment affecting hippocampal neurogenesis is largely unknown. Using mutant mice deficient in each one of the three superoxide dismutase (SOD, EC 1.15.1.1) isoforms, we have begun to determine the consequences of SOD deficiency in hippocampal neurogenesis and the related functions of learning and memory under normal condition and following cranial irradiation. 相似文献
2.
《Free radical research》2013,47(8):951-958
AbstractChanges in the intracellular and extracellular redox balance have been correlated with cell fate decisions in terms of proliferation versus differentiation, entering versus existing cell cycle and survival versus cell death. Adult hippocampal neurogenesis has been correlated with neuronal plasticity of learning and memory; however, the process is exquisitely sensitive to changes in redox balance. Cranial irradiation is an effective modality in treating brain tumours but often leads to deficits in hippocampus-related learning and memory, which is most likely due to sustained elevation of oxygen free radical production and suppression of hippocampal neurogenesis. The subcellular redox environment affecting hippocampal neurogenesis is largely unknown. Using mutant mice deficient in each one of the three superoxide dismutase (SOD, EC 1.15.1.1) isoforms, we have begun to determine the consequences of SOD deficiency in hippocampal neurogenesis and the related functions of learning and memory under normal condition and following cranial irradiation. 相似文献
3.
Sperm that adhere to the fallopian tube epithelium are of superior quality and adhesion extends their fertile life. It has been postulated that periovulatory signals, as yet undefined, promote sperm release. In the in vitro studies described here, we examined the effects of several antioxidants, reportedly present within oviductal fluid, on the modulation of sperm-oviduct adhesion in bovine species. Results showed that 1) the cell-permeant thiols (penicillamine, beta mercaptoethanol, cysteine, and dithiotreitol), as well as the nonpermeant thiol, reduced glutathione, cause adhering spermatozoa to release from the epithelium; 2) thiol action is exerted on spermatozoa; and 3) oxidized glutathione, as well as the non-thiol antioxidants (dimethylthiourea, trolox, superoxide dismutase, and catalase) have no effect. Sperm surface sulfhydryls labeled with iodoacetamide fluorescein showed that spermatozoa devoid of sulfhydryls on the head surface adhered to the fallopian epithelium in vitro, whereas thiol-induced release increased the exposure of sulfhydryls on the sperm head surface. Finally, analysis of capacitation status demonstrated that uncapacitated spermatozoa adhered to the oviduct, and that thiol-induced release of spermatozoa was accompanied by capacitation. In conclusion, thiol-reducing agents in the oviductal fluid may modulate the redox status of sperm surface proteins, leading to the release of spermatozoa selected and stored through adhesion to the fallopian tube epithelium in the bovine species. 相似文献
4.
This study was organized by Professor Karl Folkers with the objective of finding derivatives of coenzyme Q which could be more effectively absorbed and would give better biomedical effects. In this series all the compounds are 2,3 dimethoxy, 5 methyl p benzoquinone with modified side chains in the 6 position. The modifications are primarily changes in chain length, unsaturation, methyl groups and addition of terminal phenyl groups. The test system evaluates the growth of serum deficient HL60, 3T3 and HeLa cells in the presence of coenzyme Q10 or coenzyme Q analogs. Short chain coenzyme Q homologues such as coenzyme Q2 give poor growth but compounds with saturated short aliphatic side chains from C10 to C18 produce good growth. Introduction of a single double bond at the 2' or 8' position in the aliphatic chain retains growth stimulation at low concentration but introduces inhibition at higher concentration. Introduction of a 3' methyl group in addition to the 2' enyl site in the side chain decreases the growth response and maintains inhibition. Addition of a terminal phenyl group to the side chain from C5 to C10 can produce analogs which give strong stimulation or strong inhibition of growth. The action of the analogs is in addition to the natural coenzyme Q in the cell and is not based on restoration of activity after depletion of normal coenzyme Q. The effects may be based on any of the sites in the cell where coenzyme Q functions. For example, coenzyme Q2 is known to decrease mitochondrial membrane potential whereas the analog with a 10C aliphatic side chain increases potential. Both of these compounds stimulate plasma membrane electron transport. Inhibition of apoptosis by coenzyme Q may also increase net cell proliferation and the 10C analog inhibits the permeability transition pore. 相似文献
5.
Malorni W Straface E Matarrese P Ascione B Coinu R Canu S Galluzzo P Marino M Franconi F 《FEBS letters》2008,582(5):635-642
Vascular smooth muscle cells (VSMC) have been isolated from male and female rat aorta and studied to assess their susceptibility to ultraviolet radiation-induced oxidative stress. Interestingly, a gender difference, in terms of reactive oxygen species production, was detected in both basal and irradiated VSMC. Namely, VSMC from male rats were more susceptible to radiation-induced stress and easier underwent apoptosis in comparison to cells from female rats. Conversely, the latter, in the same experimental conditions, clearly displayed signs of premature senescence. These results indicate that a sort of "gender memory" can be conserved in VMSC in primary culture. 相似文献
6.
Tianxiang Gui;Ying Liu;Mingfeng Fu;吴寒;Pan Su;Xuhui Feng;Mengmeng Zheng;Zixuan Huang;Xudong Luo;Walter F.Boron;Li-Ming Chen 《中国科学:生命科学英文版》2025,(5):1452-1462
Nicotinamide adenine dinucleotide(NAD) is well known as a coenzyme involved in many redox reactions in cellular energy metabolism,or as a substrate for many NAD+-consuming enzymes,including those that generate the second messenger cyclic ADP-ribose or deacetylate proteins(e.g.,histones).The role of NAD in non-catalytic proteins is poorly understood.IRBIT and L-IRBIT(the IRBITs) are two cytosolic proteins that are structurally related to dehydrogenases but lack catalytic activity.Instead,by interacting directly with their targets,the IRBITs modulate the function of numerous proteins with important roles,ranging from Ca2+signaling and intracellular pH(pHi) regulation to DNA metabolism to autophagy.Among the targets of the IRBITs is the Na+-HCO3- cotransporter NBCe1-B,which plays a central role in intracellular pH(pHi) regulation and epithelial electrolyte transport.Here,we demonstrate that NAD modulates NBCe1-B activation by serving as a cofactor of IRBIT or L-IRBIT.Blocking NAD salvage pathway greatly decreases NBCe1-B activation by the IRBITs.Administration of the oxidized form NAD+ enhances,whereas the reduced form NADH decreases NBCe1-B activity.Our study represents the first example in which the redox state of NAD,via IRBIT or L-IRBIT,modulates the function of a membrane transport protein.Our findings reveal a new role of NAD and greatly expand our understanding of NAD biology.Because the NAD redox state fluctuates greatly with metabolic status,our work provides insight into how,via the IRBITs,energy metabolism could affect pHi regulation and many other IRBIT-dependent processes. 相似文献
7.
8.
Redox kinetics and redox state of P-450 in whole liver 总被引:1,自引:0,他引:1
B H BrauserVersmold T Bücher 《Hoppe-Seyler's Zeitschrift für physiologische Chemie》1968,349(11):1589-1590
9.
Campisi A Caccamo D Li Volti G Currò M Parisi G Avola R Vanella A Ientile R 《FEBS letters》2004,578(1-2):80-84
The aim of this study was to evaluate the involvement of oxidative stress in glutamate-evoked transglutaminase (TGase) upregulation in astrocyte cultures (14 DIV). A 24 h exposure to glutamate caused a dose-dependent depletion of glutathione intracellular content and increased the ROS production in cell cultures. These effects were receptor-mediated, as demonstrated by inhibition with GYKI 52466. The pre-incubation with glutathione ethyl ester or cysteamine recovered oxidative status and was effective in significantly reducing glutamate-increased tissue TGase. These data suggest that tissue TGase upregulation may be part of a biochemical response to oxidative stress induced by a prolonged exposure of astrocyte cultures to glutamate. 相似文献
10.
Redox state-dependent changes in the relative orientation of the phenol side chain and the peptide group in model tyrosine have been characterized using specific 2H isotopic labelling and X-band electron paramagnetic resonance (EPR) spectroscopy. Tyrosyl radicals were generated by UV photolysis of tyrosine trapped in rigid polycrystalline basic-aqueous medium at T < or = 170 K. Ring-2H(4) and beta-2H(2) substitutions on tyrosine were used to enhance the lineshape contributions from beta-hydrogen or ring-hydrogen hyperfine interactions, respectively. The EPR lineshape at 120 K of the trapped ring-2H(4)-tyrosyl radical is altered dramatically after annealing at 235 K. In contrast, the lineshape of the beta-2H(2)-tyrosyl radical is impervious to annealing. The effect of annealing on the lineshape therefore arises from a change in the isotropic hyperfine coupling between unpaired pi-electron spin density at the ring carbon atom C(1) and the beta-hydrogen nuclei, which is caused by rotational relaxation of the ring and peptide group about the C(1)-C(beta) bond. EPR simulations indicate angular distributions of the peptide group (R-) of 0 degrees < or = theta(R) < or = 30 degrees and 0 degrees < or = theta(R)< or = 18 degrees in the rigid and relaxed radical states, respectively. Redox-induced changes in the C(1)-C(beta) rotamer distribution must be accounted for in assessments of stable amino acid side chain equilibrium structures, and may influence catalytic tyrosyl radical/tyrosine function in enzymes. 相似文献
11.
Our previous results [Umeki and Nozawa (1983) Biochem. Biophys. Res. Commun. 113, 96-101] suggested that ergosterol-replaced Tetrahymena cells (ergosterol-cells) accomplish an adaptive modification of fatty-acid composition by a preferential increase in palmitoyl-CoA desaturase activity, which is principally due to the increased content of the terminal component (cyanide-sensitive factor) of the desaturase system. The present study was designed to obtain information as to how the membrane fluidity of ergosterol-cells is changed during cold temperature acclimation. The order parameter (S) of liposomes prepared from ergosterol-cell lipids was reduced more rapidly after a temperature shift-down than that of control liposomes prepared from native cells containing tetrahymanol. These results indicate that, unlike native cells containing tetrahymanol, ergosterol-cells strive to accomplish cold temperature acclimation by undergoing a great modification of membrane fluidity because of the altered microsomal desaturase activity. 相似文献
12.
The redox states of the "peroxy" (P) and "ferryl" (F) intermediates formed during reoxidation of reduced bovine cytochrome c oxidase have been probed by reduction with both ferrocytochrome c and acetylpyridine NADH under anaerobic conditions using optical spectroscopy. The reduction of the P and F forms revealed that both are in very similar redox states. One-electron reduction of either the P or F form yields an optical spectrum primarily due to oxidized enzyme implying that the heme iron of cytochrome a3 is in the ferryl state in both forms. The F and P forms were found to be 1 and less than 1.3 oxidizing equiv, respectively, above the oxidized enzyme. The slightly higher oxidation state in the P form is interpreted as being due to an optically undetectable redox center presumably located in the binuclear cavity. 相似文献
13.
The midgut of Hyalophora cecropia actively transports potassium from hemolymph to lumen and the energy for this process appears to be intimately linked to oxidative metabolism. In the present investigation, we monitored concurrently the rate of active transport and the redox levels of the components of the respiratory chain in the intact tissue under a variety of experimental conditions. Approximately equal concentrations of cytochromes a3, a, c and b-557 were found. Other investigators (Pappenheimer, Jr, A.M. and Williams, C.M. (1954) J. Biol. Chem. 209, 915, Shappirio, D.G. and Williams, C.M. (1957) Proc. R. Soc. Lond. Ser. B 147, 233 and Chance, B. and Pappenheimer, Jr, A.M. (1957) J. Biol, Chem, 209, 931) have indentified cytochrome b-557 with b5 and found that it exists primarily in an extramitochondrial location. Steady-state experiments demonstrated that all these cytochromes were approximately 50% reduced while active transport proceeded at a high rate in regular cecropia Ringer containing 32 mM KCl. When the potassium concentration was reduced, the active transport decreased and all the cytochromes became more oxidized. Addition of 1 mM cyanide inhibited active transport by 90% and caused a 100% reduction of all cytochromes. Redox state and short circuit current (Isc) kinetics measured as the tissue was made anoxic showed that all the respiratory enzymes, except cytochrome b-557, became fully reduced at a faster rate than the rate of inhibition of the Isc. The rate of cytochrome b-557 reduction followed kinetically the Isc. These observations are interpreted in a scheme where cytochrome b-557 (possibly b5) branches off cytochrome c from the conventional resporatory chain, utilizing cytochrome a3 as the terminal oxidase for both branches. Cytochrome b-557 may be involved in providing a direct link between oxidative metabolism and active transport in the midgut of the silkworm. 相似文献
14.
We have previously shown [Badyal, S. K., et al. (2006) J. Biol. Chem. 281, 24512-24520] that the distal histidine (His42) in the W41A variant of ascorbate peroxidase binds to the heme iron in the ferric form of the protein but that binding of the substrate triggers a conformational change in which His42 dissociates from the heme. In this work, we show that this conformational rearrangement also occurs upon reduction of the heme iron. Thus, we present X-ray crystallographic data to show that reduction of the heme leads to dissociation of His42 from the iron in the ferrous form of W41A; spectroscopic and ligand binding data support this observation. Structural evidence indicates that heme reduction occurs through formation of a reduced, bis-histidine-ligated species that subsequently decays by dissociation of His42 from the heme. Collectively, the data provide clear evidence that conformational movement within the same heme active site can be controlled by both ligand binding and metal oxidation state. These observations are consistent with emerging data on other, more complex regulatory and sensing heme proteins, and the data are discussed in the context of our developing views in this area. 相似文献
15.
16.
Queen reproductive state modulates pheromone production and queen-worker interactions in honeybees 总被引:1,自引:0,他引:1
The mandibular glands of queen honeybees produce a pheromone that modulates many aspects of worker honeybee physiology and behavior and is critical for colony social organization. The exact chemical blend produced by the queen differs between virgin and mated, laying queens. Here, we investigate the role of mating and reproductive state on queen pheromone production and worker responses. Virgin queens, naturally mated queens, and queens instrumentally inseminated with either semen or saline were collected 2 days after mating or insemination. Naturally mated queens had the most activated ovaries and the most distinct chemical profile in their mandibular glands. Instrumentally inseminated queens were intermediate between virgins and naturally mated queens for both ovary activation and chemical profiles. There were no significant differences between semen- and saline-inseminated queens. Workers were preferentially attracted to the mandibular gland extracts from queens with significantly more activated ovaries. These studies suggest that the queen pheromone blend is modulated by the reproductive status of the queens, and workers can detect these subtle differences and are more responsive to queens with higher reproductive potential. Furthermore, it appears as if insemination substance does not strongly affect physiological characteristics of honeybee queens 2 days after insemination, suggesting that the insemination process or volume is responsible for stimulating these early postmating changes in honeybee queens. 相似文献
17.
In Escherichia coli, the formation of SecA-SecB complexes has a direct effect on SecA ATPase activity. The mechanism of this interaction was evaluated and defined using controlled trypsinolysis, equilibrium dialysis at low temperature, and kinetic analyses of the SecA ATPase reaction. The proteolysis data indicate that SecB and the nonhydrolyzable ATP analogue AMP-P-C-P induce similar conformational changes in SecA which result in a more open or extended structure that is suggestive of the ATP-bound form. The effect is synergistic and concentration-dependent, and requires the occupation of both the high- and low-affinity nucleotide binding sites for maximum effect. The equilibrium dialysis experiments and kinetic data support the observation that the SecB-enhanced SecA ATPase activity is the result of an increased rate of ATP hydrolysis rather than an increase in the affinity of ATP for SecA and that the high-affinity nucleotide binding site is conformationally regulated by SecB. It appears that SecB may function as an intermolecular regulator of ATP hydrolysis by promoting the ATP-bound state of SecA. The inhibition of SecA ATPase activity by sodium azide in the presence of IMVs and a functional signal peptide further indicates that SecB promotes the ATP-bound form of SecA. 相似文献
18.
Karus M Denecke B ffrench-Constant C Wiese S Faissner A 《Development (Cambridge, England)》2011,138(24):5321-5331
The generation of astrocytes during the development of the mammalian spinal cord is poorly understood. Here, we demonstrate for the first time that the extracellular matrix glycoprotein tenascin C regulates the expression of key patterning genes during late embryonic spinal cord development, leading to a timely maturation of gliogenic neural precursor cells. We first show that tenascin C is expressed by gliogenic neural precursor cells during late embryonic development. The loss of tenascin C leads to a sustained generation and delayed migration of Fgfr3-expressing immature astrocytes in vivo. Consistent with an increased generation of astroglial cells, we documented an increased number of GFAP-positive astrocytes at later stages. Mechanistically, we could demonstrate an upregulation and domain shift of the patterning genes Nkx6.1 and Nkx2.2 in vivo. In addition, sulfatase 1, a known downstream target of Nkx2.2 in the ventral spinal cord, was also upregulated. Sulfatase 1 regulates growth factor signalling by cleaving sulphate residues from heparan sulphate proteoglycans. Consistent with this function, we observed changes in both FGF2 and EGF responsiveness of spinal cord neural precursor cells. Taken together, our data implicate Tnc in the regulation of proliferation and lineage progression of astroglial progenitors in specific domains of the developing spinal cord. 相似文献
19.
Umeo Takahama 《Physiologia plantarum》1993,89(4):791-798
The aqueous phase of cell walls in stems of Kalanchoë daigremontiana Hamet et Perrier de la Bâthie (apoplast) contained ascorbic acid (AA) and dehydroascorbic acid (DHA). Ratios of AA/(AA + DHA) were 0.31 ± 0.12 (SD, n = 4), whereas those of whole stems (tissues plus apoplast) were >0.9. The amounts of (AA + DHA) in the stems were 1970 ± 190 (SD, n = 4) nmol g−1 fresh weight and those in the apoplast were 14 ± 2 (SD, n = 4) nmol g−1 fresh weight of stems. Ratios of AA/(AA + DHA) differed in different tissues of the stems. The ratios of AA/(AA + DHA) of apoplast plus symplast were in the following order: pith ⋍ epidermis plus cortex > vascular bundle system, and those of apoplast were: pith > epidermis plus cortex > vascular bundle system. Ratios of AA/(AA + DHA) in the apoplast of the different tissues decreased to about 1/3 of the original values after wounding, while the amounts of (AA + DHA) remained largely unaffected. In contrast, soluble apoplastic peroxidase activities increased 30- to 70-fold on wounding. Hydrogen peroxide infiltrated into stems caused a rapid oxidation of AA. Coniferyl alcohol was oxidized by peroxidase in intercellular washing fluid and by cell wall-bound peroxidase. The oxidation of coniferyl alcohol by peroxidase in intercellular washing fluid was completely inhibited as long as AA was present in reaction mixtures. The oxidation of the coniferyl alcohol by cell wall-bound peroxidase was partially inihibited by AA and the degree of inhibition was dependent upon the concentration of AA. The possible functions of AA in the apoplast are discussed in relation to the control of peroxidase-dependent oxidation of phenolics. 相似文献
20.
Biagioni C Favilli F Catarzi S Marcucci T Fazi M Tonelli F Vincenzini MT Iantomasi T 《Experimental biology and medicine (Maywood, N.J.)》2006,231(2):186-195
The aim of this in vitro study was to evaluate the intracellular redox state and respiratory burst (RB) in neutrophils of patients with Crohn's disease (CD). The intracellular redox state and RB in neutrophils was assessed by the superoxide anion (O2*-) production induced in these cells after stimulation by various factors related to the molecular mechanisms that, if altered, may be responsible for an abnormal immune response. This can, in part, cause the onset of inflammation and tissue damage seen in CD. This study demonstrated a decreased glutathione/glutathione disulfide (GSH/GSSG) ratio index of an increased oxidative state in CD patient neutrophils. Moreover, our findings showed a decrease in tumor necrosis factor (TNF-alpha)- or phorbol 12-myristate 13-acetate (PMA)-induced O2*- production in CD patient neutrophils adherent to fibronectin as compared with controls. A decreased adhesion was also demonstrated. For this reason, the involvement of altered mechanisms of protein kinase C (PKC) and beta-integrin activation in CD patient neutrophils is suggested. These data also showed that the harmful effects of TNF-alpha cannot be caused by excessive reactive oxygen species (ROS) production induced by neutrophils. Decreased cell viability after a prolonged time of adhesion (20 hrs) was also measured in CD patient neutrophils. The findings of this study demonstrate, for the first time, that granulocyte-macrophage colony-stimulating factor (GM-CSF), a compound recently used in CD therapy, is able to activate the RB for a prolonged time both in control and CD patient neutrophils. Increased viability of CD patient neutrophils caused by GM-CSF stimulation was also observed. In conclusion, our results indicate that decreased O2*- production and adhesion, caused, in part, by an anomalous response to TNF-alpha, together with low GSH level and low cell viability, may be responsible for the defective neutrophil function found in CD patients. This can contribute to the chronic inflammation and relapses that characterize this pathology. A possible role of GM-CSF in inducing O2*- production and in restoring the defensive role of neutrophils in CD patients is suggested. 相似文献