首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gas exchange in Gossypium hirsutum L. cv. H-777 as affected by water deficit and growth regulators (IAA, GA3, BAP, ABA, ethrel) was examined. Sixty days after sowing, growth regulators in concentration 50 µM were applied as foliar spray and irrigation was withheld to get desired (moderate and severe) water deficit. All the parameters were measured on the third leaf from the top between 10:00 and 11:00. Net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), carboxylation efficiency (CE), and water potential (w) decreased significantly with the increasing water stress, however, water use efficiency (WUE) was unaffected. Foliar spray with IAA, GA3 and BAP partially counteracted the effect of water deficit on the above parameters except w, which became more negative. ABA and up to some extent ethrel increased WUE and maintained higher w, however, caused further decrease in PN, E, and gs.  相似文献   

2.
In comparison with primary leaves of French bean plants grown under a photon flux density of 100 μeinstein m-2 s-1 (LP), leaves grown under 400 μeinstein m-2 s-1 (HP) were thicker (contained 82 to 104% more dry matter per blade area), had 44 to 48% higher stomatal frequency, 18 to 26% more chlorophyll (a + b) per leaf area unit and 31 to 42% less chlorophyll (a + b) per dry matter unit, 41% higher photosynthetic and 38% higher transpiration rates at light saturation, 33% higher stomatal conductance and 40% higher Photosystem 2 (H2O → K3[Fe(CN)6]) activity of isolated chloroplasts. There were no significant differences in the Photosystem 1 (TMPD/Ascorbate → MV) activity per unit amount of chlorophyll. Higher growth irradiance increased the ratio of frequencies of stomata in the upper/lower epidermes.  相似文献   

3.
A generalized conceptual model of oscillatory transpirationin a cotton plant growing in a nutrient solution under constantenvironmental conditions is presented. The model is based uponthe results and observations of an experimental study and thecontemporary literature. It incorporates the values of parameters,of initial and boundary conditions, and of significant variablesin the transpiration stream. A non-linear coupling consistingof a hysteresis loop with a time-variant constraint acting betweenthe guard cell potential and stomatal resistance is proposed.Mathematical equations based upon the network variables weresolved via a simulation language (CSMP—IBM/360). The modelshowed gradually damped oscillations early in the light periodand sustained oscillations later in the light period. The resultingsimulation output agrees satisfactorily with pattern of oscillationsobserved in vivo. Root resistance changes through the day causedminimal effect on oscillation. The principal causal effect foroscillatory behaviour appeared to be due to stomatal effects.  相似文献   

4.
Agricultural crops experience diverse mechanical stimuli, which may affect their growth and development. This study was conducted to investigate the effects of mechanical stresses caused by hanging labels from the flower petioles (HLFP) on plant shape and cotton yields in four cotton varieties: CCRI 41, DP 99B, CCRC 21, and BAI 1. HLFP significantly reduced plant height by between 7.8% and 36.5% in all four lines and also significantly reduced the number of fruiting positions per plant in the CCRI 41, DP 99B and CCRC 21 lines. However, the number of fruiting positions in BAI 1 was unaffected. HLFP also significantly reduced the boll weight for all four cultivars and the seed cotton yields for CCRI 41, DP 99B and BAI 1. Conversely, it significantly increased the seed cotton yield for CCRC 21 by 11.2%. HLFP treatment did not significantly affect the boll count in the fruiting branches of the 1st and 2nd layers in any variety, but did significantly reduce those on the 3rd and 4th fruiting branch layers for CCRI 41 and DP 99B. Similar trends were observed for the number of bolls per FP. In general, HLFP reduced plant height and boll weight. However, the lines responded differently to HLFP treatment in terms of their total numbers of fruiting positions, boll numbers, seed cotton yields, etc. Our results also suggested that HFLP responses might be delayed for some agronomy traits of some cotton genotypes, and that hanging labels from early-opening flowers might influence the properties related with those that opened later on.  相似文献   

5.
A resistance-capacitance model of oscillatory transpirationin a cotton plant under constant environmental conditions isdiscussed. Experimental results showed that a cotton plant exposedto a sudden and large evaporative demand went through a periodof self-adjustment indicating the presence of negative feedbackmechanisms. Phase relationships between flow in stem, leaf waterpotential, water uptake by roots, and leaf turgor were characterizedthrough the day. The water-based oscillatory processes are explainedthrough a proposed model based upon a hysteresis-controlledfunction and delayed coupling in the leaf component. The periodof oscillation was found to be about 30 min. Results also indicatedthat the lag between the transpiration and water uptake ratesduring oscillations was strongly influenced by the capacitanceof the leaf and that stem capacitance was negligible.  相似文献   

6.
7.
8.
Spray carnation plants were grown for several weeks under an8 h day/16 h night regime at temperatures of approximately 21°C by day and 6, 17, or 30 °C by night. Subsequently,the rates of photosynthesis and transpiration at 20 °C weresimilar. This contrasts with evidence published for some otherspecies. Night temperature had only a slight effect on the plant's growthrate. Leaf area ratios were also similar between treatmentsand for two intervals covering a 5 week period. At the highnight temperature flowers were initiated sooner and there werefewer side shoots per plant than at the lower temperatures. The implications of these results for the optimization of theclimatic environment are discussed briefly, and the resultsare compared with those reported for other species.  相似文献   

9.
Effects of Chemical Antitranspirants on Transpiration and Growth of Grass   总被引:1,自引:0,他引:1  
The effects of foliar sprays of the metabolic inhibitors dodecenylsuccinicacid (DSA) and phenylmercuric acetate (PMA), as antitranspirants,were tested on grass grown outdoors (in lysimeters), but moreaccurate tests were made with PMA in growth rooms, using smallweighable transpirometers. Concentrations of PMA which wereweaker than 10-3.8 M resulted in only slight reductions in transpiration,whereas concentrations stronger than 10-3.2 M were phytotoxic,though water losses were reduced by about 30 per cent. PMA at10-3.5 M gave the greatest decrease in transpiration (about20 per cent) without reducing growth, but its effectivenessdepended on the amount applied per unit area of vegetation.The effects of PMA also differed with plant species and withenvironment, being greatest under conditions of low soil moisturestress and temperature. The antitranspirant reduced stomatalapertures and increased leaf temperatures.  相似文献   

10.
一种耐铀植物促生菌的筛选及促生特性研究   总被引:1,自引:0,他引:1  
采用富集培养法和LB平板法从铀尾矿污染区蓼科植物酸模根部中筛选和分离一株具有较强铀耐受能力的细菌菌株,通过特征反应和平均吸光度法分析其生长特性和不同培养条件下植物促生特性。结果表明:该菌株可在铀浓度350 mg/kg(土)条件下生长。具有较强的分泌IAA能力,普通条件下24 h产IAA 40.21 mg/L,最佳产IAA条件为温度为35℃,pH 7,转速为150 r/min,氮源为酵母膏,碳源为甘油;兼具ACC脱氨能力,普通条件下24 h产ACC酶活为0.32 U/μg,最佳的ACC酶活条件为温度为30℃,pH 7,转速180 r/min。结合形态学特征,生理生化初步特征和16s rDNA序列确定菌株为木糖氧化无色杆菌。不同铀浓度的盆栽实验接种该菌种能使苜蓿干重分别提高17.9%-110.4%;对铀的富集率分别提高12.2%-180.6%。  相似文献   

11.
盐胁迫对海岛棉和陆地棉幼苗生长及生理特性的影响   总被引:1,自引:0,他引:1  
采用盆栽法,以海岛棉(Gossypium barbadense)品种新海21号、新海34号和陆地棉(G.hirsutum)品种新陆早50号、新陆早57号为材料,探讨了盐胁迫下海岛棉和陆地棉植株的生长、叶绿素含量、净光合速率、蒸腾速率、抗氧化酶活性、渗透调节物质及丙二醛含量变化的差异。结果显示,随着盐浓度的增加,4个供试品种幼苗的生长、叶绿素含量、净光合速率、蒸腾速率均呈不同程度的下降,而过氧化物酶、超氧化物歧化酶及可溶性糖含量随着盐浓度的增加呈先增后降的趋势,脯氨酸和丙二醛含量均上升。不同品种之间,新海21号和新海34号受胁迫的影响程度小于新陆早57号和新陆早50号。在0.6%Na Cl胁迫下,海岛棉和陆地棉品种均表现出较好的耐盐性。而0.8%和1.0%的Na Cl胁迫对4个供试品种的生长抑制作用大,导致新陆早57号和新陆早50号幼苗生长缓慢、叶面积小、干物质积累少甚至死苗。在较高浓度的盐胁迫下,棉花品种幼苗第1片真叶展开受到显著抑制,可以作为棉花耐盐品种的筛选指标。  相似文献   

12.
13.
根际通气状况对盐胁迫下棉花幼苗生长的影响   总被引:1,自引:0,他引:1  
祁琳  柏新富 《植物学报》2016,51(1):16-23
以溶液培养的棉花(Gossypium hirsutum)幼苗为材料,测定了不同盐胁迫程度和不同通气状况下棉花幼苗株高、根系体积、根系和茎叶生物量以及灰分含量的变化,以探索根际通气状况对盐胁迫下棉花生长的影响。结果表明,盐胁迫抑制棉花植株生长,表现为植株变矮、叶面积减小和干物质积累下降;根际环境通气不良也会导致棉花幼苗生长受抑制、干物质积累下降和矿质元素吸收减少等。进一步比较盐胁迫和根际通气状况及两者组合作用对棉苗生长的影响,发现盐胁迫对株高和总生物量的影响较大,而根际通气状况对根系体积、根系生物量、根冠比和矿质元素吸收的影响较大。总体表现为:盐胁迫对茎叶生长的不利影响较大,而根际通气状况对根系生长的不利影响较大。同时,在根际环境通气良好的条件下,不同程度盐胁迫导致的棉花幼苗株高、根系体积、叶面积、根系生物量和总生物量的变化程度远小于根际环境通气不良条件下的变化程度。实验结果表明,根际环境通气良好可以减弱盐胁迫对棉花生长发育的抑制作用,而根际环境通气不良则会加重盐胁迫的不利影响。  相似文献   

14.
The contents of several photosynthetic metabolites — 3-phosphoglyceric acid (3-PGA), pyruvate, nicotinamide adenine dinucleotide phosphate (NADP) and adenosine triphosphate (ATP) — were determined in leaves of cotton plants (Gossypium hirsutum L. cv. H-777) subjected to waterlogging at vegetative stage, and/or drought at the reproductive stage. In controls, soil moisture contents was kept at field capacity. One day prior to stress, the plant shoots were sprayed with 5 M aqueous solution of indole-3-acetic acid (IAA), gibberellic acid (GA3), benzylaminopurine (BAP), abscisic acid, and ethrel. In control plants, various growth regulators reduced contents of 3-PGA and ATP while increased contents of NADP and pyruvate. During waterlogging IAA promoted 3-PGA content, and BAP enhanced pyruvate content. During drought, GA3 enhanced ATP and 3-PGA contents, while IAA enhanced pyruvate content.  相似文献   

15.
大豆根际土壤中氢氧化细菌促生效应研究   总被引:2,自引:0,他引:2  
以大豆根际土壤样品为研究材料,采用一个气体循环培养体系(持续通氢气装置),在适当的H2、O2和CO2下以H2作为唯一能源分离氢氧化细菌,结果共分离出40余株细菌,对其进行耗氢能力测定,结果显示有20株菌具有氧化氢功能和自养生长能力。对20株氢氧化细菌进行小麦促生试验,筛选出11株具有促生效果的根际促生细菌。采用薄层层析法,对11株氢氧化细菌进行了ACC降解的分析,确定了菌株A06具有ACC脱氨酶活性,证实ACC脱氨酶是导致大豆根际土壤中氢氧化细菌促进小麦幼苗生长的原因之一。  相似文献   

16.
17.
Rifamycin-resistant derivatives of plant growth promotingBacilluspolymyxa strains L6, Pw-2, and S20 were used to evaluate theinteraction of bacterial–mycorrhizal co-inoculation onpine and spruce seedling growth. We were particularly interestedin determining if the mechanism by which bacteria stimulatedseedling growth depended on the presence of ectomycorrhizae.Mycorrhizal inoculum was introduced by adding 2ml of one ofsix forest floor soil types originating from different spruceand pine stands to seedling containers. Mycorrhizal roots developedin 34% of pine and 27% of spruce seedlings treated with forestsoil, but no differences between forest soils were detected.Most mycorrhizae were formed byWilcoxinasp. (E-strain) (98%for spruce and 67% for pine); small numbers ofAmphinema-like,Myceliumradicis atrovirens, Suillus-like,Thelephora-like, andTuber-likemycorrhizae were also found on pine (27% in total).Thelephora-likefungi comprised 2% of spruce mycorrhize. In the absence of bacterialinoculum, spruce seedling biomass was positively correlatedwith the number of mycorrhizal root tips, but this trend wasnot detected in spruce inoculated with bacteria or in pine.Bacterial inoculation did not influence the mycorrhizal statusof seedlings, but all threeBacillusstrains stimulated growthof both conifer species. Root biomass, in particular, was significantlyenhanced by up to 18% compared with uninoculated controls. Mycorrhizalfungi improved the growth of spruce seedlings, but plant growthpromotion byBacilluswas similar for mycorrizal and non-mycorrhizalseedlings of both species. Our results suggest thatBacillusstrainsL6-16R, Pw-2R, and S20-R enhance conifer seedling growth througha mechanism unrelated to mycorrhizal fungi. Hybrid spruce; Picea glaucaxengelmannii ; lodgepole pine; Pinus contortavar.latifoliaEngelm.; inoculation; Bacillus polymyxa; seedling growth promotion; mycorrhizae  相似文献   

18.
马宏秀  王开勇 《植物学报》2019,54(2):208-216
为探究棉粕对盐碱胁迫下棉花(Gossypium hirsutum)的抗盐碱机理, 通过田间试验, 研究添加不同棉粕用量对8 g·kg -1盐碱胁迫下棉花生理及生长的补偿效应。结果表明, 添加棉粕能够增加盐碱胁迫下棉花不同器官对K +的吸收, 降低对Na +的吸收, 维持盐碱胁迫下细胞内K +和Na +的平衡, 显著促进棉花生长, 提高叶片叶绿素含量和光合作用效率, 有效缓解盐碱胁迫对棉花的伤害。其中, 以添加6 000 kg·hm -2棉粕处理的效果最显著, 且盐胁迫下棉粕的改良效果较好。主成分分析结果表明, 盐碱胁迫下棉花生长生理的主要影响因子为叶片K +/Na +比值、根长、鲜重、干重和胞间CO2浓度(Ci)。  相似文献   

19.
Effect of Wind on the Transpiration of Young Trees   总被引:3,自引:0,他引:3  
DIXON  M.; GRACE  J. 《Annals of botany》1984,53(6):811-819
The effects of wind on the transpiration rates of four plantspecies, Pinus sylvestris L., Quercus robur L., Fagus sylvaticaL. and Sorbus aucuparia L., were studied in a controlled environmentwind tunnel. Transpiration declined with increasing wind speedin a manner consistent with predictions of the Penman-Monteithequation. The stomatal resistance declined with increasing windspeed in two species and increased in one, but this effect wassmaller than reported in other studies. In all cases the magnitudeof the stomatal response was over-shadowed by the decliningleaf to air vapour pressure difference. Pinus sylvestris L., Quercus robur L., Fagus sylvatica L., Sorbus aucuparia L., wind, transpiration, cooling curve technique, stomatal resistance, aerodynamic resistance, Penman-Monteith equation  相似文献   

20.
Quantitative Determinations of the Effect of Excision on Transpiration   总被引:2,自引:0,他引:2  
The temporary transpiration increase which normally occurs when a shoot or a part of a shoot is cut off in the air was studied qnantitatively in young wheat plants by the aid of the corona-hygrometer. The temporary transpiration increase can be characterized by the maximum increase in transpiration rate after the cutting, or by the total time of the temporary transpiration increase, or by the quantity of water given off by the shoot due to the temporary transpiration increase. The influences of the water vapour pressure, the speed of the air stream, and the light intensity on the temporary transpiration increase were determined. It is important to pay attention to the climate in the chamber where the shoot transpires. The maximum temporary transpiration increase was reduced more or less lineary with increasing water vaponr pressure of the air surrounding the shoot and increased with increasing speed of the air stream through the transpiration chamber. The reduction of the maximum temporary transpiration increase at higher light intensities was mainly due to the higher water vapour pressure in the chamber. The total time of the temporary transpiration increase was very little influenced by the water vapour pressure but was reduced more or less lineary with the logarithm of increasing light intensity. When the shoot was cut off in the water, there was normally no temporary transpiration increase. Only at low light intensities there could occur temporary transpiration increases similar to those found when the shoot was cut off in the air. Some hypotheses which could explain the temporary transpiration increase are discussed. The results in this investigation seem to favour the hypothesis that the temporary transpiration increase is due to a sudden reduced water transport up into the leaf, which can bring about a passive opening of the stomata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号