首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim: To isolate bacteria capable of degrading endosulfan (ES) and the more toxic ES sulfate and to characterize their metabolites. Methods and Results: A Pseudomonas sp. strain IITR01 capable of degrading α‐ES and toxic ES sulfate was isolated using technical‐ES through enrichment culture techniques. No growth and no degradation were observed using β‐ES. Thin‐layer chromatography and gas chromatography‐mass spectrum analysis revealed the disappearance of both α‐ES and ES sulfate and the formation of hydroxylated products ES diol, ether and lactone. We show here for the first time the formation of aforementioned metabolites in contrast to ES hemisulfate yielded by an Arthrobacter sp. Metabolism of α‐ES and endosulfate was also observed using the crude cell extract of IITR01. The molecular mass of protein induced during the degradation of α‐ES and sulfate as substrate was found to be approximately 150 kDa as determined by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE). Conclusion: We describe characterization of bacterium capable of degrading α‐ES and ES sulfate but not β‐ES. Genetic investigation suggests that a gene nonhomologous to the reported esd may be present in the strain IITR01. Significance and Impact of the Study: This study describes toxic ES degradation by a Pseudomonas species that may be utilized for the bioremediation of the industrial soils contaminated with ES residues.  相似文献   

2.
硫丹及其主要代谢产物对紫色土中酶活性的影响   总被引:1,自引:0,他引:1  
熊佰炼  张进忠  代娟  邢赜  徐卫红 《生态学报》2013,33(15):4649-4657
采用室内避光培养,研究了硫丹及其主要代谢产物(硫丹硫酸盐和硫丹二醇)在紫色土中的质量浓度变化及其对土壤酶活性的影响。结果表明,α-、β-硫丹在紫色土中的消解过程符合一级反应动力学方程,半衰期分别为32—99d和69—116 d。代谢产物硫丹硫酸盐浓度在前20 d增加较快,30 d后基本趋于稳定;硫丹二醇浓度先增加后减小,15 d时达到最大。5 mg/kg的硫丹处理5 d时对脲酶和硝酸还原酶活性起激活作用,随着培养时间的增加,硫丹处理对脲酶活性从无显著影响逐渐转向抑制,第60天时抑制作用达到最大;高浓度处理(100 mg/kg)强烈抑制脲酶活性,最大降幅达到94.5%。硫丹处理(除5 mg/kg外)对硝酸还原酶活性起抑制作用,浓度越大,抑制作用越强,最大降幅达到89.9%。5 mg/kg的处理抑制多酚氧化酶活性,10—20 mg/kg的处理30 d后由激活逐渐转向抑制;100 mg/kg的处理起激活作用,第15天时酶活性达到最大,随后持续下降,第60天时恢复到对照水平。偏相关分析表明,脲酶、硝酸还原酶活性与硫丹硫酸盐浓度呈显著负相关,硫丹硫酸盐抑制这两种酶的活性;多酚氧化酶活性与α-、β-硫丹、硫丹硫酸盐和硫丹二醇浓度的偏相关性不显著。  相似文献   

3.
Periodic perturbations were used to evaluate the system stability and robustness of naphthalene biodegradation in a continuous flow stirred tank reactor (CSTR) containing a soil slurry. The experimental design involved perturbing the test system using a sinusoidal input either of naphthalene or non-naphthalene organic carbon at different frequencies during steady state operation of the reactors. The response of the test system was determined by using time series off-gas analysis for naphthalene liquid phase concentration and degradation, total viable cell counts, and gene probe analysis of naphthalene degradative genotype, and by batch mineralization assays.Naphthalene biodegradation rates were very high throughout the experimental run (95 to >99% removed) resulting in very low or undetectable levels of naphthalene in the off-gas and reactor effluent. Attempts to reduce the rate of naphthalene biotransformation by either reducing the reactor temperature from 20°C to 10°C or the dissolved oxygen level (>1 mg/L) were unsuccessful. Significant naphthalene biodegradation was observed at 4°C. While variable, the microbial community as measured by population densities was not significantly affected by temperature changes. In terms of naphthalene biotransformation, the system was able to adapt readily to all perturbations in the reactor.Department of Chemical EngineeringDepartment of Microbiology and The Graduate Program in EcologyDepartment of Civil Engineering, New Orleans University  相似文献   

4.
Molecular characterization based on 16s rDNA gene sequence analysis of bacterial colonies isolated from endosulfan contaminated soil showed the presence of Ochrobacterum sp, Burkholderia sp, Pseudomonas alcaligenes, Pseudomonas sp and Arthrobacter sp which degraded 57–90% of α-endosulfan and 74–94% of β-endosulfan after 7days. Whole cells of Pseudomonas sp and Pseudomonas alcaligenes showed 94 and 89% uptake of α-isomer and 86 and 89% of β-endosulfan respectively in 120 min. In Pseudomonas sp, endosulfan sulfate was the major metabolite detected during the degradation of α-isomer, with minor amount of endosulfan diol while in Pseudomonas alcaligenes endosulfan diol was the only product during α-endosulfan degradation. Whole cells of Pseudomonas sp also utilized 83% of endosulfan sulfate in 120 min. In situ applications of the defined consortium consisting of Pseudomonas alcaligenes and Pseudomonas sp (1:1) in plots contaminated with endosulfan showed that 80% of α-endosulfan and 65% of β-endosulfan was degraded after 12 weeks of incubation. Endosulfan sulfate formed during endosulfan degradation was subsequently degraded to unknown metabolites. ERIC-PCR analysis indicated 80% survival of introduced population of Pseudomonas alcaligenes and Pseudomonas sp in treated plots.  相似文献   

5.
Solutions from the washing of polychlorinated biphenyl (PCB)-contaminated soil with a variety of commercial nonionic or anionic surfactants were incubated with Pseudomonas sp. LB400 in an attempt to remediate the soil and destroy the PCBs. Nonionic surfactants washed more PCBs from the soil (up to 89%) but inhibited their biodegradation. Anionic surfactants washed less PCBs from the soil but were more effective in biodegradation tests, removing up to 67% of total PCBs.  相似文献   

6.
Pseudomonas aeruginosa (P. aeruginosa) is a highly pathogenic bacteria involved in numerous diseases among which, are urinary tract infections (UTIs). The pyocyanin secreted as a virulence factor by this bacterium has many beneficial applications but its high cost remains an obstacle for its widespread use. In this study, a total of fifty urine isolates were identified as P. aeruginosa. All strains produced pyocyanin pigment with a range of 1.3–31 µg/ml. The highest producer clinical strain P21 and the standard strain PA14 were used in optimization of pyocyanin production. Among tested media, king’s A fluid medium resulted in the highest yield of pyocyanin pigment followed by nutrient broth. Growth at 37 °C was superior in pyocyanin production than growth at 30 °C. Both shaking and longer incubation periods (3–4 days) improved pyocyanin production. The pyocyanin yield was indifferent upon growth of P21 at both pH 7 and pH 8. In conclusion, the optimum conditions for pyocyanin production are to use King’s A fluid medium of pH 7 and incubate the inoculated medium at 37 °C with shaking at 200 rpm for a period of three to four days.  相似文献   

7.
《Process Biochemistry》2010,45(12):1944-1948
N-Acyl homoserine lactone (AHL) is a widespread quorum sensing signal molecule in Gram-negative bacteria and has an important role in many biological processes. However, it is still poorly understood whether or not AHL is present in pollutant treatment processes and further, what its role is in biodegradation processes. In this work, an environmental isolate of Pseudomonas aeruginosa CGMCC 1.860 that is an aromatic degrader and AHL producer was selected. The AHL plate bioassay indicated that AHL was produced by this strain during biodegradation of aromatic compounds including phenol, benzoate, p-hydroxy-benzoate, salicylate, and naphthalene. The AHLs were identified as N-butyryl-l-homoserine lactone (BHL) and N-hexanoyl-l-homoserine lactone (HHL) by using thin layer chromatography (TLC) and high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry (HPLC–APCI-MS/MS) analyses. Furthermore, phenol biodegradation was improved by exogenously added AHL extracts or by endogenously over-produced AHLs, repressed by abolishment of AHLs production, and not affected by the addition of extracts without AHLs. The results indicated that AHL was involved in the process of biodegradation of pollutants.  相似文献   

8.
A mixed enrichment culture of microorganisms capable of accelerated mineralization of atrazine was isolated from soil treated with successive applications of the herbicide. Liquid cultures of this consortium, in the presence of simple carbon sources, mineralized 96% of the applied atrazine (0.56 mM) within 7 days. Atrazine mineralization in culture is initiated with the formation of the metabolite hydroxyatrazine. In soil treated with atrazine at a concentration of 0.14 mM (concentration is based on total soil mass), and then inoculated with the microbial consortium, the parent compound was completely transformed in 25 days. After 30 days of incubation, 60% of the applied atrazine was accounted for as14CO2. As was found with the liquid cultures, hydroxyatrazine was the major metabolite. After 145 days, soil extractable hydroxyatrazine declined to zero and 86% of the applied atrazine was accounted for as14CO2. No metabolites, other than hydroxyatrazine, were recovered from either the liquid culture or soil inoculated with the consortium. The use of the mixed microbial culture enhanced mineralization more than 20 fold as compared to uninoculated soil.  相似文献   

9.
The phenyl-urea herbicide isoproturon is a major contaminant of surface and ground-water in agricultural catchments. Earlier work suggested that within-field spatial variation of isoproturon degradation rate resulted from interactions between catabolizing Sphingomonas spp. and pH. In the current study, changes to the structure of Sphingomonas communities during isoproturon catabolism were investigated using Sphingomonas-specific 16S rRNA gene primers. Growth-linked catabolism at high-pH (>7.5) sites was associated with the appearance of multiple new denaturing gradient gel electrophoresis (DGGE) bands. At low-pH sites, there was no change in DGGE banding at sites in which there was cometabolism, but at sites in which there was growth-linked catabolism, degradation was associated with the appearance of a new band not present at high pH sites. Sequencing of DGGE bands indicated that a strain related to Sphingomonas mali proliferated at low pH sites, while strain Sphingomonas sp. SRS2, a catabolic strain identified in earlier work, together with several further Sphingomonas spp., proliferated at high-pH sites. The data indicate that degradation was associated with complex changes to the structure of Sphingomonas spp. communities, the precise nature of which was spatially variable.  相似文献   

10.
《Process Biochemistry》2007,42(8):1211-1217
Biodegradation of MTBE under various multi-substrate conditions by Pseudomonas aeruginosa was investigated in this research. The addition of BTEX in various combinations significantly inhibited MTBE biodegradation. This result was mainly due to the non-competitive inhibition between MTBE and BTEX compounds. The rate of MTBE biodegradation decreased with the increasing substrate number for multi-substrate conditions. Additionally, the kinetic models developed in this research successfully simulate the degradation of MTBE under various multi-substrate conditions. However, the accumulation of TBA during MTBE biodegradation revealed that P. aeruginosa was unable to degrade TBA during the period of time tested.  相似文献   

11.
Several organochlorinated pesticides including DDT, PCBs and dieldrin have been reported to cause immune suppression and increase susceptibility to infection in animals. Often this manifestation is accompanied by atrophy of major lymphoid organs. It has been suggested that increased apoptotic cell death leading to altered T-B cell ratios, and loss of regulatory cells in critical numbers leads to perturbations in immune function. The major objective of our study was to define the mechanism by which endosulfan, an organochlorinated pesticide, induces human T-cell death using Jurkat, a human T-cell leukemic cell line, as an in vitro model. We exposed Jurkat cells to varying concentrations of endosulfan for 0-48 h and analyzed biochemical and molecular features characteristic of T-cell apoptosis. Endosulfan lowered cell viability and inhibited cell growth in a dose- and time-dependent manner. DAPI staining was used to enumerate apoptotic cells and we observed that endosulfan at 10-200 M induced a significant percentage of cells to undergo apoptotic cell death. At 48 h, more than 90% cells were apoptotic with 50 M of endosulfan. We confirmed these observations using both DNA fragmentation and annexin-V binding assays. It is now widely being accepted that mitochondria undergo major changes early during the apoptotic process. We examined mitochondrial transmembrane potential (m) in endosulfan treated cells to understand the role of the mitochondria in T-cell apoptosis. Within 30 min of chemical exposure, a significant percentage of cells exhibited a decreased incorporation of DiOC6(3), a cationic lipophilic dye into mitochondria indicating the disruption of m. This drop in m was both dose- and time-dependent and correlated well with other parameters of apoptosis. We also examined whether this occurred by the down regulation of bcl-2 protein expression that is likely to increase the susceptibility of Jurkat cells to endosulfan toxicity. Paradoxically, the intracellular expression of bcl-2 protein was elevated in a dose dependent manner suggesting endosulfan-induced apoptosis occurred by a non-bcl-2 pathway. Based on these data, as well as those reported elsewhere, we propose the following sequence of events to account for T-cell apoptosis induced by endosulfan: uncoupling of oxidative phosphorylation excess ROS production GSH depletion oxidative stress disruption of m release of cytochrome C and other apoptosis related proteins to cytosol apoptosis. This study reports for the first time that endosulfan can induce apoptosis in a human T-cell leukemic cell line which may have direct relevance to loss of T cells and thymocytes in vivo. Furthermore, our data strongly support a role of mitochondrial dysfunction and oxidative stress in endosulfan toxicity.  相似文献   

12.
Intensive use of endosulfan has resulted in contamination of soil and water environments at various sites in Pakistan. This study was conducted to isolate efficient endosulfan-degrading fungal strains from contaminated soils. Sixteen fungal strains were isolated from fifteen specific sites by employing enrichment techniques while using endosulfan as a sole sulfur source, and tested for their potential to degrade endosulfan. Among these fungal strains, Chaetosartorya stromatoides, Aspergillus terricola, and Aspergillus terreus degraded both α- and β-endosulfan upto 75% in addition to 20% abiotic degradation of the spiked amount (100 mg l−1) in the broth within 12 days of incubation. Biodegradation of endosulfan by soil fungi was accompanied by a substantial decrease in pH of the broth from 7.0 to 3.2. The major metabolic product was endosulfan diol along with very low concentrations of endosulfan ether. Maximum biodegradation of endosulfan by these selected fungal strains was found at an initial broth pH of 6, incubation temperature of 30°C and under agitation conditions. This study indicates that the isolated strains carried efficient enzyme systems required for bioremediation of endosulfan-contaminated soil and water environments.  相似文献   

13.
铜绿假单胞菌产蛋白酶的发酵条件优化   总被引:2,自引:0,他引:2  
【目的】鉴定一株来源于酱油曲能够分泌蛋白酶的铜绿假单胞菌CAU342A,优化其产蛋白酶的发酵条件。【方法】采用形态学观察、16S r RNA基因序列比对和生理生化方法鉴定菌株CAU342A;通过碳源、氮源、初始pH、温度、表面活性剂及发酵时间的单因素优化和正交试验获得最适发酵条件。【结果】菌株CAU342A被鉴定为铜绿假单胞菌(Pseudomonas aeruginosa),其最适发酵产酶条件为(质量体积比):3%酒糟,1.5%酵母浸提物,0.05%吐温-80,0.5%NaCl,0.7%K_2HPO_4,0.3%KH_2PO_4,0.04%MnSO_4,培养基初始pH 7.5,30°C培养72 h。在最适发酵条件下,该菌株最大产酶水平达到2 653.5 U/m L。蛋白酶酶谱分析表明该菌株能够产生至少4种具有蛋白酶活性的同工酶,其中两个主要酶谱带对应分子量分别为32 k D和50 k D。【结论】铜绿假单胞菌CAU342A高产蛋白酶,具有很大的工业应用潜力。  相似文献   

14.
Aliphatic hydrocarbons make up a substantial portion of organic contamination in the terrestrial environment. However, most studies have focussed on the fate and behaviour of aromatic contaminants in soil. Despite structural differences between aromatic and aliphatic hydrocarbons, both classes of contaminants are subject to physicochemical processes, which can affect the degree of loss, sequestration and interaction with soil microflora. Given the nature of hydrocarbon contamination of soils and the importance of bioremediation strategies, understanding the fate and behaviour of aliphatic hydrocarbons is imperative, particularly microbe-contaminant interactions. Biodegradation by microbes is the key removal process of hydrocarbons in soils, which is controlled by hydrocarbon physicochemistry, environmental conditions, bioavailability and the presence of catabolically active microbes. Therefore, the aims of this review are (i) to consider the physicochemical properties of aliphatic hydrocarbons and highlight mechanisms controlling their fate and behaviour in soil; (ii) to discuss the bioavailability and bioaccessibility of aliphatic hydrocarbons in soil, with particular attention being paid to biodegradation, and (iii) to briefly consider bioremediation techniques that may be applied to remove aliphatic hydrocarbons from soil.  相似文献   

15.
Aim:  To study the effect of biosurfactant on aqueous phase solubility and biodegradation of chlorpyrifos.
Methods and Results:  A Pseudomonas sp. (ChlD), isolated from agricultural soil by enrichment culture technique in the presence of chlorpyrifos, was capable of producing biosurfactant (rhamnolipids) and degrading chlorpyrifos (0·01 g l−1). The partially purified rhamnolipid biosurfactant preparation, having a CMC of 0·2 g l−1, was evaluated for its ability to enhance aqueous phase partitioning and degradation of chlorpyrifos (0·01 g l−1) by ChlD strain. The best degradation efficiency was observed at 0·1 g l−1 supplement of biosurfactant, as validated by GC and HPLC studies.
Conclusion:  The addition of biosurfactant at 0·1 g l−1 resulted in more than 98% degradation of chlorpyrifos when compared to 84% in the absence of biosurfactant after 120-h incubation.
Significance and Impact of the Study:  This first report, to the best of our knowledge, on enhanced degradation of chlorpyrifos in the presence of biosurfactant(s), would help in developing bioremediation protocols to counter accumulation of organophosphates to toxic/carcinogenic levels in environment.  相似文献   

16.
Zhang C  Wang S  Yan Y 《Bioresource technology》2011,102(14):7139-7146
Pseudomonas aeruginosa CH7, isolated from activated sludge, was able not only to isomerize and degrade beta-cypermethrin but also to utilize it as the sole source of carbon and energy for growth and produce biosurfactant. The strain effectively degraded beta-cypermethrin with inocula biomass of 0.1-0.2 g L−1 at 25-35 °C, pH 6-9, and a final concentration of beta-cypermethrin 25-900 mg L−1. Via response surface methodology analysis, we found the optimal condition was 29.4 °C, pH 7.0, and inocula biomass of 0.15 g L−1; under these conditions, about 90% of the beta-cypermethrin could be degraded within 12 days. Noticeably, biosurfactant was detected in the MSM culture of strain CH7, suggesting that the biosurfactant (rhamnolipid) could potentially enhance the degradation of beta-cypermethrin by promoting the dissolution, adsorption, and absorption of the hydrophobic compounds. Therefore, CH7 may serve as a promising strain in the bioremediation of wastewater and soil polluted by beta-cypermethrin.  相似文献   

17.
Addition of toluene into slurry phase laboratory microcosm is proposed in order to increase desorption rate of hydrocarbons and as an alternative to improve bioavailability of hydrocarbon in aged soils. Our studies showed that toluene has a positive effect on desorption of total petroleum hydrocarbons (TPH). Addition of 14,000 mg toluene/kg of soil, in highly polluted soil, increased the consumption rate of hydrocarbons three times in comparison to control without solvent. In 30 days the initial TPH concentration in soil, 292,000 mg/kg, diminished 45%. Although toluene was able to dissolve complex organic compounds such as asphaltene fraction, it probably yielded a highly toxic toluene-hydrocarbons phase. The inhibitory effect of toluene-TPH was also studied. A substrate inhibition model was used: the k(m) and k(i) constants were 57 and 490 mg TPH/L liquid phase, respectively. Experimental data were well described when the proposed model included sequential desorption and biodegradation phenomena. Damk?hler number evaluation showed that rate of mass transfer was the limiting step in overall biodegradation in nonsolvent control. When high concentration of toluene was added, then bioreaction was the limiting step, but inhibitory effect should be considered. However, toluene addition at low concentrations facilitates the biodegradation of aromatic compounds.  相似文献   

18.
Summary Endosulfan is an insecticide used on many vegetable crops. In mushroom cultivation, vegetable materials used as a growth substrate may contain residues of endosulfan that may accumulate in the final mushroom biomass. After preparing the substrate, it is subjected to pasteurization and/or composting and then inoculated with the desired fungus. The purpose of this research was to determine the rate and extent of endosulfan reduction from a grass substrate that was either composted or sterilized by autoclaving. In addition, the rate and extent of removal of endosulfan from substrate colonized with Pleurotus pulmonarius was determined. The degradation of 65 mg/kg endosulfan was analyzed on both, the substrate preparation and the culture of P. pulmonarius on the grass Digitaria decumbens. During composting in presence of Ca(OH)2 for 120 h, the concentrations of α and β endosulfan were reduced by 61.4 and 49.5% respectively, significantly higher compared with the control (without Ca(OH)2,) in which the reduction was 38.5%. After sterilization the concentration of α and β endosulfan was reduced by 84.8 and 87.5% respectively. After the colonization of substrate by P. pulmonarius (15 days after spawning) α and β endosulfan were reduced by 96% and at the end of cultivation (35 days after spawning) were reduced by 99%. When carpophores were analyzed, residues of α and β endosulfan were observed between 0.019–0.084 mg/kg. The results showed that α and β endosulfan were partially removed during the preparation of substrate and entirely eliminated during fungal colonization on the substrate.  相似文献   

19.
AIMS: To study the effect of co-contaminants (phenol) on the biodegradation of pyridine by freely suspended and calcium alginate immobilized bacteria. METHODS AND RESULTS: Varying concentrations of phenol were added to free and calcium alginate immobilized Pseudomonas putida MK1 (KCTC 12283) to examine the effect of this pollutant on pyridine degradation. When the concentration of phenol reached 0.38 g l(-1), pyridine degradation by freely suspended bacteria was inhibited. The increased inhibition with the higher phenol levels was apparent in increased lag times. Pyridine degradation was essentially completely inhibited at 0.5 g l(-1) phenol. However, immobilized cells showed tolerance against 0.5 g l(-1) phenol and pyridine degradation by immobilized cell could be achieved. CONCLUSIONS: This works shows that calcium alginate immobilization of microbial cells can effectively increase the tolerance of P. putida MK1 to phenol and results in increased degradation of pyridine. SIGNIFICANCE AND IMPACT OF THE STUDY: Treatment of wastewater stream can be negatively affected by the presence of co-pollutants. This work demonstrates the potential of calcium alginate immobilization of microbes to protect cells against compound toxicity resulting in an increase in pollutant degradation.  相似文献   

20.
The coupling of electrokinetic movement of an organic contaminant, 2,4-dichlorophenoxyacetic acid (2,4-D), through soil and its biodegradation in situ has been demonstrated. In a first experiment, the direction and rate of movement of 2,4-D were determined using homogeneously contaminated soil (864 mg 2,4-D/kg dry weight soil) compacted into six individual compartments, 6 cm long, 3 cm wide, and 4 cm deep. Each compartment was bordered by a carbon felt anode and a stainless steel cathode. The application of a current density of 3.72 A/m(2) led to migration of 2,4-D towards the anode at a rate of approximately 4 cm/day. In a second experiment, electrokinetic movement and biodegradation were combined in situ. Sterilized silt soil contaminated with ring-labeled 14C-2,4-D (811 mg 2,4-D/kg dry weight soil) was compacted into a single soil compartment, 22 cm long, 7 cm wide, and 4 cm deep, in a 4.5 cm region adjacent to the cathode. The remainder of the compartment was filled with sterilized soil (to a total weight of 1,015 g). Burkholderia spp. RASC c2 (1.88 x 10(11) cells), a tetracycline-resistant bacterium with chromosomally encoded degradative genes for 2,4-D, was inoculated into the soil at a position 14-16 cm from the cathode. The reactor was placed within a sealed perspex box, with a constant air flow connected to sodium hydroxide traps. Under an applied current density of 0.89 A/m(2), the pollutant moved towards the bacteria. As it reached the inoculated region, its concentration decreased in the soil and 14CO2 was recovered in the traps. At the end of the experiment, 87.1% of radiolabel had been removed from the soil, 5.8% of which was recovered as 14CO2. A third, control, experiment showed a significant contrast in the absence of an electric current, where a slow rate of diffusion controlled the movement of both 2,4-D and bacteria in the soil and biodegradation occurred at the interface between the diffusing fronts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号