首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y Itzhak  S Alerhand 《FASEB journal》1989,3(7):1868-1872
The existence of multiple receptor sites for the psychotomimetic agents phencyclidine (PCP) and some opiate-benzomorphans such as (+)N-allylnormetazocine ([+]SKF 10,047) in the mammalian central nervous system is well documented. These are: 1) sigma/PCP (sigma p) site, which binds both PCP and psychotomimetic opiates but not antipsychotics such as haloperidol, 2) PCP site, which selectively binds PCP analogs, and 3) sigma/haloperidol (sigma h) site, for which certain antipsychotics and (+)SKF 10,047, but not PCP analogs, display high affinity. In this study we examined the regulation of these receptor sites after chronic treatment of mice with either PCP or haloperidol. The following radiolabeled ligands were used to assess binding to the various receptor subtypes: [3H]-1-[1-[3-hydroxyphenyl)cyclohexyl]piperidine ([3H]PCP-3-OH; sigma p and PCP sites), [3H]thienyl-phencyclidine ([3H]TCP; PCP site), (+)-[3H]SKF 10,047 (sigma p and sigma h sites), and [3H]haloperidol (sigma h and D-2 dopamine receptors). Treatment of mice for 1, 7, 14, and 21 days with PCP (10 mg.kg-1.day-1) failed to induce variations in sigma p, sigma h, and PCP receptor binding. However, similar treatment with haloperidol (4 mg.kg-1.day-1) induced: 1) complete elimination of the binding to sigma h sites, 2) up-regulation of D-2 dopamine receptors, and 3) no change in sigma p and PCP receptor binding after 14 or 21 days of treatment. However, a single day of haloperidol treatment or in vitro incubation of mouse brain membranes with haloperidol failed to alter receptor binding. This study suggests that prolonged treatment of mice with haloperidol induces a loss in sigma h receptors that are presumably associated with certain psychotomimetic effects. This phenomenon is accompanied by an up-regulation of D-2 dopamine receptors.  相似文献   

2.
Y Itzhak  I Stein 《Life sciences》1990,47(13):1073-1081
An increasing amount of evidence suggests the existence of specific binding sites for psychotomimetic drugs from the opiate-benzomorphan and arylcyclohexylamine series. The sigma binding sites have preferential affinity for the dextrorotatory isomers of certain opiate benzomorphans, such as (+)SKF 10047, (+)cyclazocine and (+)pentazocine and also for some neuroleptics (e.g., haloperidol). The PCP receptor has preferential affinity for phencyclidine (PCP) analogs and other non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists. The physiological significance of the PCP receptor is associated with the blockade of the NMDA type of the glutamate receptor, implying a neuroprotective role of the PCP receptor. However, the significance of the sigma binding sites is less conspicuous. It is not only that drugs from distinct pharmacological classes display a certain degree of affinity for the "sigma/haloperidol" binding sites, but also that drugs which do not induce or block psychotomimetic activity, i.e., (+)3-(3-hydroxyphenyl)-N-(1-propyl) piperidine [(+)3-PPP] and 1,3-di-o-tolyl-guanidine (DTG), display relatively high affinity for the sigma binding sites. The diversity of the compounds which are proposed to interact with the sigma receptors and the variety of the responses elicited by these drugs suggest the existence of sigma receptor subtypes. The finding that the type A of monoamine oxidase (MAO) inhibitors, which are used in treatment of affective disorders, display high affinity for the sigma binding sites suggests their involvement in affective or schizoaffective disorders. Revealing the existence of sigma receptor subtypes may help to elucidate their association with various psychiatric disorders.  相似文献   

3.
The sigma opiates differ from other opiates in their stimulatory and psychotomimetic actions. The sigma opiate [3H](-)-SKF-10,047 has been used to characterize sigma receptors in rat nervous tissue. Binding of [3H](-)-SKF-10,047 to rat brain membranes was of high affinity, saturable, and reversible. Scatchard analysis revealed the apparent interaction of this drug with two distinct binding sites characterized by affinities of 0.03 and 75 nM (5 mM Tris-HCl buffer, pH 7.4, at 4 degrees C). Competition analyses involving rank order determinations for a series of opiates and other drugs indicate that the high-affinity binding site is the mu opiate receptor. The lower-affinity site (revealed after suppression of mu and delta receptor binding) has been identified as the sigma opiate/phencyclidine receptor. In vitro autoradiography has been used to visualize neuroanatomical patterns of receptors labeled using [3H](-)-SKF-10,047 in the presence of normorphine and [D-Ala2,D-Leu5]enkephalin to block mu and delta interactions, respectively. Labeling patterns differ markedly from those for mu, delta, or kappa receptors. The highest densities (determined by quantitative autoradiography) are found in the medial portion of the nucleus accumbens, amygdaloid nucleus, hippocampal formation, central gray, locus coeruleus, and the parabrachial nuclei. Receptors in these structures could account for the stimulatory, mood-altering, and analgesic properties of the sigma opiates. Although not the most selective sigma opiate ligand, [3H](-)-SKF-10,047 binds to sigma opiate receptors in brain, and this interaction can be readily distinguished from its interactions with other classes of brain opiate receptors.  相似文献   

4.
The DM1/sigma 1 site binds dextromethorphan (DM) and sigma receptor ligands. The broad binding specificity of this site and its peculiar subcellular distribution prompted us to explore the possibility that this site is a member of the cytochrome P-450 superfamily of enzymes. We tested the effects of the liver microsomal monooxygenase inhibitor SKF 525-A (Proadifen), and other P-450 substrates on the binding of [3H]dextromethorphan, [3H]3-(-3-Hydroxyphenyl)-N-(1-propyl)piperidine and (+)-[3H]1,3-Di-o-tolyl-guanidine ([3H]DTG) to the guinea pig brain. SKF 525-A, l-lobeline and GBR-12909 inhibited the binding of the three labeled ligands with nM affinity. Each drug has identical nM Ki values for the high-affinity site labeled by the three ligands. This indicated that they displaced the labeled ligands from the common DM1/sigma 1 site. Debrisoquine and sparteine, prototypical substrates for liver debrisoquine 4-hydroxylase, displayed Ki values of 9-13 and 3-4 microM respectively against the three labeled ligands. These results, the broad specificity of the DM1/sigma 1 binding site, and its peculiar subcellular distribution, raises the possibility that this binding site is a member of the cytochrome P-450 superfamily of isozymes, rather than a neurotransmitter receptor. These findings may have important implications for the understanding of the therapeutic, side effects and toxicity of several neurotropic drugs.  相似文献   

5.
M Klein  J M Musacchio 《Life sciences》1990,47(18):1625-1634
Computer-assisted analysis of self- and cross-displacement studies between dextromethorphan (DM) and (+)-3-(3-hydroxyphenyl)-N-(1-propyl) piperidine ((+)-3-PPP) demonstrated in the rat brain the existence of two high-affinity and one low-affinity binding site for each ligand. One high-affinity site is the common DM1/sigma 1 site, the affinity of which is allosterically increased 4 to 5-fold by 10 microM ropizine. The Kd values of the DM1/sigma 1 for DM and (+)-3-PPP are 17 and 11 nM respectively. DM binds to the second high-affinity site (R2) with a Kd of 15 nM; this site has low affinity for (+)-3-PPP. Conversely, (+)-3-PPP binds with high affinity (Kd 53 nM) to another site (R3), that has low-affinity for DM. The Bmax of the common DM1/sigma 1 site in the rat is about ten times smaller than that in the guinea pig. Thus, extreme caution should be exercised in extrapolating from one species to another. Since DM and most sigma ligands bind to more than one site, not all of which are shared, it is important not to attribute the complex pharmacological effects of these ligands to a single hypothetical receptor.  相似文献   

6.
Kim HC  Shin CY  Seo DO  Jhoo JH  Jhoo WK  Kim WK  Shin EJ  Lee YH  Lee PH  Ko KH 《Life sciences》2003,72(16):1883-1895
Interest in dextromethorphan (DM) has been renewed because of its anticonvulsant and neuroprotective properties. However, DM at supra-antitussive doses can produce psychotomimetic effects in humans. Recently, we demonstrated that DM exerts psychotropic effects in mice [Neurosci. Lett. 288 (2000) 76, Life Sci. 69 (2001) 615]. We synthesized a series of compounds with a modified morphinan ring system, with the intention of developing compounds that retain the anticonvulsant activity with weak psychotropic effects [Bioorg. Med. Chem. Lett. 11 (2001) 1651]. In order to extend our understanding of the pharmacological intervention of these morphinans, we assessed their behavioral effects, and then examined whether they exert protective effects on maximal electroshock convulsions (MES) in mice. Repeated treatment (20 or 40 mg/kg, i.p./day x 7) with DM or dextrorphan (a major metabolite of DM; DX) significantly enhanced locomotor activity in a dose-related manner. This locomotor stimulation was accentuated more in the animals treated with DX, and might be comparable to that of phencyclidine (PCP). By contrast, treatment with a metabolite of DM [3-methoxymorphinan (3MM) or 3-hydroxymorphinan (3HM)], 3-allyloxy-17-methylmorphinan (CPK-5), or 3-cyclopropylmethoxy-17-methylmorphinan (CPK-6) did not significantly alter locomotor activity or patterns. The behavioral effects mediated by these morphinans and PCP paralleled the effects of conditioned place preference. DM, DX, CPK-5, and CPK-6 had anticonvulsant effects against MES, while 3MM and 3HM did not show any anticonvulsant effects. We found that DM, DX, CPK-5 and CPK-6 were high-affinity ligands at sigma(1) receptors, while they all had low affinity at sigma(2) receptors. DX had relatively higher affinity for the PCP sites than DM. By contrast, CPK-5 and CPK-6 had very low affinities for PCP sites, suggesting that PCP sites are not requisites for their anticonvulsant actions. Our results suggest that the new morphinan analogs are promising anticonvulsants that are devoid of PCP-like behavioral side effects, and their anticonvulsant actions may be, in part, mediated via sigma(1) receptors.  相似文献   

7.
Multiple opiate receptors: emerging concepts   总被引:9,自引:0,他引:9  
R S Zukin  S R Zukin 《Life sciences》1981,29(26):2681-2690
Increasing biochemical evidence indicates that the wide spectrum of opiate pharmacological actions are mediated via heterogeneous classes of receptors. μ receptors have been identified as the high affinity sites where morphine-like opiates exert their analgesic effects. δ receptors have a somewhat different CNS distribution and have been identified as sites relatively selective for the naturally occuring enkephalins. Recent biochemical studies provide evidence for two additional classes of opiate receptor sites which were originally proposed on the basis of physiological studies. Ketocyclazocine-like opiates produce their unique ataxic and sedative effects via interaction with K receptors, and SKF-10,047 (N-allylnorcyclazocine) and related opiates produce stimulant and psychotomimetic effects via interactions with σ receptors.Many opiate drugs interact at multiple receptor sites. Thus, the constellation of neuropharmacological actions of a particular opioid ligand may reflect its various potencies at a combination of μ, δ, K, and σ receptors.  相似文献   

8.
Dextromethorphan (DM) is a well-known antitussive dextrorotatory morphinan. We and others have demonstrated that sigma (σ) receptors may be important for DM-mediated neuromodulation. Because an earlier report suggested that DM might affect sexual function and that σ receptor ligands affect signaling pathways in the periphery, we examined whether DM-induced psychotoxic burden affected male reproductive function. We observed that DM had a high affinity at σ-1 receptors in the brain and testis but relatively low affinity at σ-2 receptors. Prolonged treatment with DM resulted in conditioned place preference and hyperlocomotion, followed by an increase in Fos-related antigen expression in the nucleus accumbens in male mice. Simultaneously, DM induced significant reductions in gonadotropin-releasing-hormone immunoreactivity in the hypothalamus. Moreover, we observed that DM induced increased sperm abnormalities and decreased sperm viability and sexual behavior. These phenomena were significantly attenuated by combined treatment with BD1047, a σ-1 receptor antagonist, but not by SM-21, a σ-2 receptor antagonist. Thus, these results suggest that DM psychotoxicity might lead to reproductive stress in male mice by activating σ-1 receptors.  相似文献   

9.
1. Dextromethorphan (DM), a dextrorotatory nonopioid antitussive, binds to specific high-affinity sites in the central nervous system. These sites are distinct from the opioid and other known neurotransmitter receptor sites. Antitussives such as carbetapentane and caramiphen also bind to DM sites with a nanomolar affinity. 2. The anticonvulsant drugs phenytoin and ropizine produce an allosteric enhancement of the binding of [3H]DM to guinea pig brain. DM, carbetapentane, and caramiphen also are efficacious anticonvulsant agents in the rat maximal electroshock seizures test, and DM enhances the anticonvulsant effects of phenytoin (PHT). 3. These results suggest that drugs that bind to the DM sites could be used alone as anticonvulsants or in combination with PHT to lower its effective dose and reduce its side effects. 4. The investigation of the DM binding sites may help to open new approaches for the treatment of convulsive disorders and to explain further some of the molecular mechanisms of neutronal excitability.  相似文献   

10.
The interaction of the tetrahydroisoquinoline (THIQ) and 3-aminotetraline (3-AT derivatives with opioid mu-receptors has been studied. It is shown that THIQ and 3-AT derivatives bind to a site on the mu-receptor which these compounds are likely to share with "classical" opiates, whose structure also includes the 3-AT group. The binding site for nonpeptide substances is in a strong allosteric interaction with the binding site for enkephalins. Some biological effects of THIQ and 3-AT derivatives can be explained in terms of their interaction with opioid receptors. One may speculate that the evolution of the endogenous opioid receptor ligands proceeded from simple 3-AT derivatives towards morphinans and, probably, benzomorphans.  相似文献   

11.
The sigma-receptor, a distinct binding site in brain tissue that may mediate some of the psychotomimetic properties of benzomorphan opiates and phencyclidine, has been solubilized using the ionic detergent sodium cholate. Binding assays were performed with the solubilized receptor using vacuum filtration over polyethyleneimine-treated glass fiber filters. The pharmacological specificity of the solubilized binding site for sigma-receptor ligands is nearly identical to the membrane-bound form of the receptor, with the order of potencies for displacement of the selective sigma-ligand [3H]di-o-tolylguanidine ([3H]DTG) closely correlated. The stereoselectivity for (+)-benzomorphan opiate enantiomers was retained by the solubilized receptor. The soluble receptor retained high affinity for binding of [3H]DTG (KD = 28 +/- 0.5 nM) and (+)-[3H]3-(3-hydroxyphenyl)-N-(1-propyl)piperidine [(+)-[3H]3-PPP] (KD = 36 +/- 2 nM). Photoaffinity labeling of the solubilized receptor by [3H]p-azido-DTG, a sigma-selective photoaffinity label, resulted in labeling of a 29-kilodalton polypeptide identical in size to that labeled in intact membranes. Estimation of the Stokes radius of the [3H]DTG binding site was obtained by Sepharose CL-6B chromatography in the presence of 20 mM cholate and calculated to be 8.7 nm. This value was identical to the molecular size found for the binding sites of the sigma-selective ligands (+)-[3H]3-PPP and (+)-[3H]SKF-10,047, supporting the hypothesis that all three ligands bind to the same macromolecular complex.  相似文献   

12.
We showed that dextromethorphan (DM) provides neuroprotective/anticonvulsant effects and that DM and its major metabolite, dextrorphan, have a high-affinity for sigma(1) receptors, but a low affinity for sigma(2) receptors. In addition, we found that DM has a higher affinity than DX for sigma(1) sites, whereas DX has a higher affinity than DM for PCP sites. We extend our earlier findings by showing that DM attenuated trimethyltin (TMT)-induced neurotoxicity (convulsions, hippocampal degeneration and spatial memory impairment) in rats. This attenuation was reversed by the sigma(1) receptor antagonist BD 1047, but not by the sigma(2) receptor antagonist ifenprodil. DM attenuates TMT-induced reduction in the sigma(1) receptor-like immunoreactivity of the rat hippocampus, this attenuation was blocked by the treatment with BD 1047, but not by ifenprodil. These results suggest that DM prevents TMT-induced neurotoxicity, at least in part, via sigma(1) receptor stimulation.  相似文献   

13.
Phencyclidine   总被引:4,自引:0,他引:4  
Phenycyclidine (PCP) produces many profound effects in the central nervous system. PCP has numerous behavioral and neurochemical effects such as inhibiting the uptake and facilitating the release of dopamine, serotonin, and norepinephrine. PCP also interacts with sigma, mu opioid, muscarinic, and nicotinic receptors. However, the psychotomimetic effects induced by PCP are believed to be mediated by specific PCP receptors, where PCP binds with greater potency than sigma compounds. Electrophysiological, behavioral, and neuro-chemical evidence strongly suggests that at least some of the many PCP actions result from antagonism of excitatory amino acid-induced responses via PCP receptors. The recent isolation and partial characterization of the alpha and beta endopsychosins and the identification of other endogenous ligands for the PCP and sigma receptors, is another promising area of research in the elucidation of the physiological role of an endogenous PCP and sigma system.  相似文献   

14.
Data acquired to date show that some sigma receptor ligands reveal "antidepressant-like" activity in the forced swim test in mice and rats. Moreover, our preliminary results suggested that joint administration of sigma receptor ligands and amantadine (AMA, a glutamatergic/NMDA receptor antagonist) caused a positive interaction in the Porsolt test in rats, as had already been observed in the case of co-treatment with clinically active antidepressants and AMA. The aim of the present study was to examine the effect of combined administration of sigma1 or sigma2 receptor agonists, SA4503 or siramesine, respectively, and AMA or memantine (MEM) (uncompetitive NMDA receptor antagonist). SA4503 or siramesine given jointly with MEM (as well as with AMA) decreased the immobility time in rats. The effect of SA4503 and AMA co-administration was antagonized by progesterone, a sigma1 receptor antagonistic neurosteroid. Combined treatment with siramesine and AMA was modified by neither progesterone nor BD1047 (a novel sigma antagonist with preferential affinity for sigma1 sites); but it was counteracted by sulpiride and prazosin (a dopamine D2- and an alpha1-adrenergic receptor antagonist, respectively). The "antidepressant-like" effect induced by siramesine and MEM was not antagonized by progesterone, but was attenuated by BD1047, sulpiride and prazosin. The obtained results give support to the hypothesis that sigma (particularly sigma1) receptors may be one of the possible mechanisms by which drugs induce antidepressant-like activity in the forced swim test, and that this effect may be enhanced by NMDA receptor antagonists. Combined treatment with sigma ligands and AMA or MEM (applied in the clinic) may be an alternative to the treatment of antidepressant-resistant depressive patients in the future.  相似文献   

15.
The effects of 1) the phencyclidine receptor ligand TCP, 2) sigma receptor ligands (+)3-PPP and DTG, and 3) N-methyl-D-aspartate receptor blockers MK-801 and dextrorphan were determined on a brainstem mechanism which controls the termination of the inspiratory phase of the breathing cycle. Inspiratory bursts were recorded from the phrenic nerve in decerebrate paralyzed cats ventilated by means of a phrenic driven servoventilator. The central mechanism which terminates inspiration was tested by withholding lung inflation, thus suppressing the contribution of the vagal feedback from the lungs to inspiratory termination. TCP increased the duration of test inspiration (tTi) by 17% at 0.03 mg/kg and by 14-fold (from 1.6 to 23 s) at 1 mg/kg. With dextrorphan, tTi was significantly increased at 3 mg/kg. In contrast, (+)3-PPP and DTG did not increase tTi at doses up to 10 mg/kg, although MK-801 (0.03 mg/kg), given after the sigma ligands, increased tTi by 59-90%. It is concluded that phencyclidine but not sigma receptor ligands block the central mechanism which terminates inspiration and that the likely site of action is the NMDA receptor complex.  相似文献   

16.
In human spermatozoa, Ca(2+) entry is stimulated by progesterone or prostaglandin E(1) (PGE(1)). The regulation of cation currents by progestins involves sigma receptors, and sigma binding sites are abundant in testis. We examined the effects of sigma ligands on human spermatozoa. Ca(2+) entry induced by progesterone or PGE(1) was not altered by the sigma ligands haloperidol and ditolylguanidine. However, the steroidal sigma ligands RU 3117 and RU 1968 had distinct effects. Stimulation by RU 3117 resulted in activation and homologous desensitization of the sperm progesterone receptor but not of the PGE(1) receptor. Because haloperidol and ditolylguanidine did not affect RU 3117 and progesterone actions in spermatozoa, we conclude that sigma receptors are not involved. However, RU 1968 potently inhibited both the progesterone- and PGE(1)-induced Ca(2+) entry and acrosome reaction. At higher concentrations, RU 1968 also inhibited hormonal Ca(2+) signaling in fibroblasts. Despite suppression of Ca(2+) mobilization, inhibition of phospholipase C by RU 1968 was not observed. Furthermore, RU 1968 did not impair the binding of inositol-1,4,5-trisphosphate to its endoplasmic reticulum receptor. Because RU 1968 preferentially inhibits signaling pathways in spermatozoa, the future development of more selective drugs structurally related to RU 1968 may be a novel approach for pharmacological contraception.  相似文献   

17.
Mosberg HI 《Biopolymers》1999,51(6):426-439
The elaboration of a pharmacophore model for the delta opioid receptor selective ligand JOM-13 (Tyr-c[D-Cys-Phe-D-Pen]OH) and the parallel, independent development of a structural model of the delta receptor are summarized. Although the backbone conformation of JOM-13's tripeptide cycle is well defined, considerable conformational lability is evident in the Tyr(1) residue and in the Phe(3) side chain, key pharmacophore elements of the ligand. Replacement of these flexible features of the ligand by more conformationally restricted analogues and subsequent correlation of receptor binding and conformational properties allowed the number of possible binding conformations of JOM-13 to be reduced to two. Of these, one was chosen as more likely, based on its better superposition with other conformationally constrained delta receptor ligands. Our model of the delta opioid receptor, constructed using a general approach that we have developed for all rhodopsin-like G protein-coupled receptors, contains a large cavity within the transmembrane domain that displays excellent complementarity in both shape and polarity to JOM-13 and other delta ligands. This binding pocket, however, cannot accommodate the conformer of JOM-13 preferred from analysis of ligands, alone. Rather, only the "alternate" allowed conformer, identified from analysis of the ligands but "disfavored" because it does not permit simultaneous superposition of all pharmacophore elements of JOM-13 with other delta ligands, fits the binding site. These results argue against a simple view of a single, common fit to a receptor binding site and suggest, instead, that at least some binding site interactions of different ligands may differ.  相似文献   

18.
Opiate drugs produce their effects by acting upon G protein coupled receptors (GPCRs) and although they are among the most effective analgesics available, their clinical use is restricted by unwanted side effects such as tolerance, physical dependence, respiratory depression, nausea and constipation. As a class, opiates share a common profile of unwanted effects but there are also significant differences in ligand liability for producing these actions. A growing number of studies show that GPCRs may exist in multiple active states that differ in their signalling and regulatory properties and which may distinctively bind different agonists. In this review we summarize evidence supporting the existence of multiple active conformations for MORs and DORs, analyze information favouring the existence of ligand-specific receptor states and assess how ligand-selective efficacy may contribute to the production of longer lasting, better tolerated opiate analgesics.  相似文献   

19.
BMY-14802, a selective sigma ligand currently under investigation as an atypical antipsychotic agent, was tested for potential anti-ischemic activity. BMY-14802 (10, 30 and 50 mg/kg) did not produce any stereotyped behavior, ataxia or seizures. When gerbils were pretreated with 10, 30 or 50 mg/kg of BMY-14802 30 min prior to bilateral occlusion of carotid arteries for 5 min, BMY-14802 significantly protected against ischemia-induced neuronal loss in the hippocampus. Thus, BMY-14802 may also be useful as an anti-ischemic agent that does not produce psychotomimetic effects.  相似文献   

20.
PURPOSE OF REVIEW: Recent findings suggesting that cannabinoid receptors are potential targets for the treatment of atherosclerosis are reviewed. RECENT FINDINGS: Cannabinoids, such as Delta9-tetrahydrocannabinol, the major psychoactive compound of marijuana, their synthetic analogs and endogenous cannabinoid ligands, produce their biological effects by interacting with specific receptors. In the apolipoprotein E knockout mouse model of atherosclerosis, Delta9-tetrahydrocannabinol was shown to inhibit disease progression through pleiotropic effects on inflammatory cells. Blocking of cannabinoid receptor CB2, the main cannabinoid receptor expressed on immune cells, abolished the observed effects. The development of novel cannabinoid receptor ligands that selectively target CB2 receptors or pharmacological modulation of the endocannabinoid system might offer novel therapeutic strategies in the treatment of atherosclerosis. Several reports demonstrating an implication of the endocannabinoid system in different inflammatory conditions support this hypothesis. SUMMARY: The immunomodulatory capacity of cannabinoids is now well established and suggests a broad therapeutic potential of cannabinoids for a variety of conditions, including atherosclerosis. New strategies based on nonpsychotropic cannabinoid receptor ligands or compounds modulating endocannabinoid synthesis or stability might solve the problem of the unwanted side effects associated with cannabinoid administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号