首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The entry of Na+ or H+ into cells of Escherichia coli via the melibiose transport system was stimulated by the addition of certain galactosides. The principal cell used in these studies (W3133) was a lactose transport negative strain of E. coli possessing an inducible melibiose transport system. Such cells were grown in the presence of melibiose, washed, and incubated in the presence of 25 microM Na+. The addition of thiomethylgalactoside (TMG) resulted in a fall in Na+ concentration in the incubation medium. No TMG-stimulated Na+ movement was observed in uninduced cells. In an alpha-galactosidase negative derivative of W3133 (RA11) a sugar-stimulated Na+ uptake was observed in melibiose-induced cells on the addition of melibiose, thiodigalactoside, methyl-alpha-galactoside, methyl-beta-galactoside, and galactose, but not lactose. It was inferred from these studies that the substrates of the melibiose system enter the cell on the melibiose carrier associated with the simultaneous entry of Na+ when this cation is present in the incubation medium. Extracellular pH was measured in unbuffered suspensions of induced cells in order to study proton movement across the membrane of cells exposed to different galactosides. In the absence of external Na+ or Li+ the addition of melibiose or methyl-alpha-galactoside resulted in marked alkalinization of the external medium (consistent with H+-sugar cotransport). On the other hand TMG, thiodigalactoside, and methyl-beta-galactoside gave no proton movement under these conditions. When Na+ was present, the addition of TMG or melibiose resulted in acidification of the medium. This observation is consistent with the view that the entry of Na+ with TMG or melibiose carries into the cell a positive charge (Na+) which provides the driving force for the diffusion of protons out of the cell. It is concluded that the melibiose carrier recognition of cations differs with different substrates.  相似文献   

2.
The pathway by which L-lactate (Lac) crosses the plasma membrane of isolated human neutrophils was investigated. The influx of [14C]Lac from a 2 mM Lac, 145 mM Cl-, 5.6 mM glucose medium was approximately 1.5 meq/liter of cell water.min and was sensitive to the organomercurial agent mersalyl (apparent Ki approximately 20 microM), to alpha-cyano-4-hydroxycinnamate (CHC), the classical inhibitor of monocarboxylate transport in mitochondria, and to UK-5099 (apparent Ki approximately 40 microM), a more potent analogue of CHC. Transport was also strongly blocked (greater than 80%) by 1 mM of either 3,5-diiodosalicylic acid, MK-473 (an indanyloxyacetate derivative), or diphenyl-amine-2-carboxylate, and by 0.4 mM pentachlorophenol, but not by 1 mM ethacrynic acid, furosemide, or the disulfonic stilbenes SITS or H2DIDS. One-way [14C]Lac efflux from steady-state cells amounted to approximately 6 meq/liter.min and was likewise affected by the agents listed above. Influx, which was membrane potential insensitive and Na+ independent, displayed a strong pH dependence: extracellular acidification enhanced uptake while alkalinization inhibited the process (pK' approximately 5.7 at 2 mM external Lac). The rate of [14C]Lac influx was a saturable function of external Lac, the Km being approximately 7 mM. Steady-state cells exhibited an intracellular Lac content of approximately 5 mM and secreted lactic acid into the bathing medium a a rate of approximately 4 meq/liter.min. Secretion was completely suppressed by 1 mM mersalyl which inactivates the carrier, leading to an internal accumulation of Lac. That the Lac carrier truly mediates an H+ + Lac- cotransport (or formally equivalent Lac-/OH- exchange) was documented by pH-stat techniques wherein an alkalinization of poorly buffered medium could be detected upon the addition of Lac; these pH changes were sensitive to mersalyl. Thus, the Lac carrier of neutrophils possesses several features in common with other monocarboxylate transport systems in erythrocytes and epithelia.  相似文献   

3.
The entry of Na+ or H+ into cells of Escherichia coli via the melibiose transport system was stimulated by the addition of certain galactosides. The principal cell used in these studies (W3133) was a lactose transport negative strain of E. coli possessing an inducible melibiose transport system. Such cells were grown in the presence of melibiose, washed, and incubated in the presence of 25 μM Na+. The addition of thiomethylgalactoside (TMG) resulted in a fall in Na+ concentration in the incubation medium. No TMG-stimulated Na+ movement was observed in uninduced cells. In an α-galactosidase negative derivative of W3133 (RA11) a sugar-stimulated Na+ uptake was observed in meliboise-induced cells on the addition of melibiose, thiodigalactoside, methyl-α-galactoside, methyl-β-galactoside, and galactose, but not lactose. It was inferred from these studies that the substrates of the melibiose system enter the cell on the melibiose carrier associated with the simultaneous entry of Na+ when this cation is present in the incubation medium.

Extracellular pH was measured in unbuffered suspensions of induced cells in order to study proton movement across the membrane of cells exposed to different galactosides. In the absence of external Na+ or Li+ the addition of melibiose or methyl-α-galactoside resulted in marked alkalinization of the external medium (consistent with H+-sugar cotransport). On the other hand TMG, thiodigalactoside, and methyl-β-galactoside gave no proton movement under these conditions. When Na+ was present, the addition of TMG or melibiose resulted in acidification of the medium. This observation is consistent with the view that the entry of Na+ with TMG or melibiose carries into the cell a positive charge (Na+) which provides the driving force for the diffusion of protons out of the cell. It is concluded that the melibiose carrier recognition of cations differs with different substrates.  相似文献   

4.
Galactose-nonfermenting (Gal-) Streptococcus thermophilus TS2 releases galactose into the extracellular medium when grown in medium containing excess lactose. Starved and de-energized Gal- cells, however, could be loaded with galactose to levels approximately equal to the extracellular concentration (0 to 50 mM). When loaded cells were separated from the medium and resuspended in fresh broth containing 5 mM lactose, galactose efflux occurred. De-energized, galactose-loaded cells, resuspended in buffer or medium, accumulated [14C]lactose at a greater rate and to significantly higher intracellular concentrations than unloaded cells. Uptake of lactose by loaded cells was inhibited more than that by unloaded cells in the presence of extracellular galactose, indicating that a galactose gradient was involved in the exchange system. When de-energized, galactose-loaded cells were resuspended in carbohydrate-free medium at pH 6.7, a proton motive force (Δp) of 86 to 90 mV was formed, whereas de-energized, nonloaded cells maintained a Δp of about 56 mV. However, uptake of lactose by loaded cells occurred when the proton motive force was abolished by the addition of an uncoupler or in the presence of a proton-translocating ATPase inhibitor. These results support the hypothesis that galactose efflux in Gal-S. thermophilus is electrogenic and that the exchange reaction (lactose uptake and galactose efflux) probably occurs via an antiporter system.  相似文献   

5.
In this report, we compared the effects on the growth of Lactobacillus plantarum of raising the medium molarity by high concentrations of KCl or NaCl and iso-osmotic concentrations of nonionic compounds. Analysis of cellular extracts for organic constituents by nuclear magnetic resonance spectroscopy showed that salt-stressed cells do not contain detectable amounts of organic osmolytes, whereas sugar-stressed cells contain sugar (and some sugar-derived) compounds. The cytoplasmic concentrations of lactose and sucrose in growing cells are always similar to the concentrations in the medium. By using the activity of the glycine betaine transport system as a measure of hyperosmotic conditions, we show that, in contrast to KCl and NaCl, high concentrations of sugars (lactose or sucrose) impose only a transient osmotic stress because external and internal sugars equilibrate after some time. Analysis of lactose (and sucrose) uptake also indicates that the corresponding transport systems are neither significantly induced nor activated directly by hyperosmotic conditions. The systems operate by facilitated diffusion and have very high apparent affinity constants for transport (>50 mM for lactose), which explains why low sugar concentrations do not protect against hyperosmotic conditions. We conclude that the more severe growth inhibition by salt stress than by equiosmolal concentrations of sugars reflects the inability of the cells to accumulate K+ (or Na+) to levels high enough to restore turgor as well as deleterious effects of the electrolytes intracellularly.  相似文献   

6.
Hepatocyte transmembrane potential (Vm) behaves as an osmometer and varies with changes in extracellular osmotic pressure created by altering the NaCl concentration in the external medium (Howard, L.D. and Wondergem, R. (1987) J. Membr. Biol. 100, 53). We now have demonstrated similar effects on Vm by increasing external osmolality with added sucrose and not altering ionic strength. We also have demonstrated that hyperosmotic stress-induced depolarization of Vm results from changes in membrane K+ conductance, gK, rather than from changes in the K+ equilibrium potential. Vm and aKi of hepatocytes in liver slices were measured by conventional and ion-sensitive microelectrodes, respectively. Cell water vols. were estimated by differences in wet and dry weights of liver slices after 10-min incubations. Effect of hyperosmotic medium on membrane transference number for K+, tK, was measured by effects on Vm of step-changes in external [K+]. Hepatocyte Vm decreased 34, 52 and 54% when tissue was superfused with medium made hyperosmotic with added sucrose (50, 100 and 150 mM). Correspondingly, aKi increased 10, 18 and 29% with this hyperosmotic stress of added sucrose. Tissue water of 2.92 +/- 0.10 kg H2O/kg dry weight in control solution decreased to 2.60 +/- 0.05, 2.25 +/- 0.06 and 2.22 +/- 0.05 kg H2O/kg dry weight with additions to medium of 50, 100 and 150 mM sucrose, respectively. Adding 50 mM sucrose to medium decreased tK from 0.20 +/- 0.01 to 0.05 +/- 0.01. Depolarization by 50% with hyperosmotic stress (100 mM sucrose) also occurred in Cl-free medium where Cl- was substituted with gluconate. We conclude that hepatocytes shrink during hyperosmotic stress, and the aKi increases. The accompanying decrease in Vm is opposite to that expected by an increase in aKi, and at least in part results from a concomitant decrease in gK. Changes in membrane Cl- conductance most likely do not contribute to osmotic stress-induced depolarization, since equivalent decreases in Vm occurred with added sucrose in cells depleted of Cl- by superfusing tissue with Cl-free medium.  相似文献   

7.
A mutant of the Escherichia coli lactose carrier has been selected (in an invertase-positive strain) based on its ability to grow on 6 mM sucrose in a manner dependent upon lactose carrier induction by isopropyl-1-thio-beta-D-galactopyranoside. The mutant was cloned, and DNA sequencing revealed a point mutation in lacY which changed alanine 177 to valine. The valine 177 mutation increased the transport rate for both [14C]sucrose and the maltose analog 4-nitrophenyl-alpha-maltoside. The potency for inhibition of beta-ONPG transport by several sugars containing the glucopyranosyl moiety (maltose, cellobiose, or palatinose) was increased significantly relative to the parental carrier. Similar experiments showed that the mutation did not affect the affinity for such commonly studied substrates as 4-nitrophenyl-alpha-D-galactopyranoside and beta-D-galactopyranosyl-1-thio-beta-D-galactopyranoside. These data indicate that gross structural alteration of the galactoside binding site cannot account for increased transport of sucrose and maltose by the valine 177 mutant. We conclude that effects of the valine 177 mutation are not limited strictly to changes in observed sugar affinity and that sugar-specific changes in turnover number may be an important determinant of the altered spectrum of sugar specificities exhibited by the Val-177 carrier. These phenomena may be related to the effect of this mutation on proton recognition (described in King, S.C., and Wilson, T.H. (1990) J. Biol. Chem. 265, 9645-9651).  相似文献   

8.
To promote SE maturation, the influence of different media components on different developmental stages was quantitatively evaluated. Advanced maturation was achieved with a sequence of culture media (prematuration medium and maturation medium) that contained various carbohydrates, organic nitrogen compounds and plant growth regulators. Application of lactose, BA, L-glutamine and casein hydrolysate in the prematuration medium enhanced the total number of SEs and promoted advanced differentiation. The highest number of late torpedo stage SEs was observed on maturation medium supplemented with 200 mM lactose and 29 mM sucrose. Lactose and sorbitol favoured SE maturation up to the early cotyledonary stage. With application of PEG and high ABA concentrations (20–40 M), only early torpedo stages were formed. The number of late torpedo stage SEs was significantly higher on hormone free media or with lower ABA concentrations (0–5 M). Formation of early and late cotyledonary SEs was significantly enhanced by adding BA in the maturation medium: neither Zeatin nor 2iP were effective. In addition, low sucrose concentrations in the proliferation medium (29 mM compared to 58 mM) also favoured the formation of cotyledonary SE in the maturation medium.  相似文献   

9.
The cladoceran Daphnia pulex is well established as a model for ecotoxicology. Here, we show that D. pulex is also useful for investigating the effects of toxins on the heart in situ and the toxic effects in lactose intolerance. The mean heart rate at 10 degrees C was 195.9+/-27.0 beats/min (n=276, range 89.2-249.2, >80% 170-230 beats/min). D. pulex heart responded to caffeine, isoproteronol, adrenaline, propranolol and carbachol in the bathing medium. Lactose (50-200 mM) inhibited the heart rate by 30-100% (K(1/2)=60 mM) and generated severe arrhythmia within 60 min. These effects were fully reversible by 3-4 h. Sucrose (100-200 mM) also inhibited the heart rate, but glucose (100-200 mM) and galactose (100-200 mM) had no effect, suggesting that the inhibition by lactose or sucrose was not simply an osmotic effect. The potent antibiotic ampicillin did not prevent the lactose inhibition, and two diols known to be generated by bacteria under anaerobic conditions were also without effect. The lack of effect of l-ribose (2 mM), a potent inhibitor of beta-galactosidase, supported the hypothesis that lactose and other disaccharides may affect directly ion channels in the heart. The results show that D. pulex is a novel model system for studying effects of agonists and toxins on cell signalling and ion channels in situ.  相似文献   

10.
The relationship between Ca++ and pinocytosis was investigated in Amoeba proteus. Pinocytosis was induced with 0.01% alcian blue, a large molecular weight dye which binds irreversibly to the cell surface. The time-course and intensity of pinocytosis was monitored by following the uptake of [3H]SUCROSE. When the cells are exposed to 0.01% alcian blue, there is an immediate uptake of sucrose. The cells take up integral of 10% of their initial volume during the time-course of pinocytosis. The duration of pinocytosis in the amoeba is integral of 50 min, with maximum sucrose uptake occurring 15 min after the induction of pinocytosis. The pinocytotic uptake of sucrose is reversibly blocked at 3 degrees C and a decrease in pH increases the uptake of sucrose by pinocytosis. The process of pinocytosis is also dependent upon the concentration of the inducer in the external medium. The association between Ca++ and pinocytosis in A. proteus was investigated initially by determining the effect of the external Ca++ concentration on sucrose uptake induced by alcian blue. In Ca++-free medium, no sucrose uptake is observed in the presence of 0.01% alcian blue. As the Ca++ concentration is increased, up to a maximum of 0.1 mM, pinocytotic sucrose uptake is also increased. Increases in the external Ca++ concentration above 0.1 mM brings about a decrease in sucrose uptake. Further investigations into the association between Ca++ and pinocytosis demonstrated that the inducer of pinocytosis displaces surface calcium in the amoeba. It is suggested that Ca++ is involved in two separate stages in the process of pinocytosis; an initial displacement of surface calcium by the inducer which may increase the permeability of the membrane to solutes and a subsequent Ca++ influx bringing about localized increases in cytoplasmic Ca++ ion activity.  相似文献   

11.
A cell suspension of grape, Vitis vinifera L. cv Gamay Fréaux, was grown under different conditions of water stress (high external osmotic potential) induced by an increase of sucrose concentration or by the addition of mannitol to the culture medium. Best growth (cell density) was achieved in the low osmotic potential medium. Increasing the osmotic potential of the medium from –0.5 MPa to –0.9 MPa medium resulted in a significant increase in accumulation of anthocyanins in pigmented cells. Regulation of the osmotic potential of culture medium may be useful in controlling anthocyanin production.  相似文献   

12.
The transport of lactose by Escherichia coli cells was radically different in the absence and in the presence of an exogenous energy source: in the former case, the time course of lactose accumulation was monotonous; in the latter case, lactose accumulation reached a maximum and then decreased to a final steady-state level lower than that observed in the absence of an energy source. We show that this "overshoot" is the result of a decrease in the influx rate and of an increase in the rate constant of efflux as lactose accumulates. These phenomena were irreversible. The extent of the overshoot was dependent upon the experimental conditions: it was maximal at alkaline pH, for low external potassium concentrations, and for relatively high external lactose concentrations (around or above the KT of uptake). The addition of an energy source to resting E. coli cells resulted in an increase in both the electrochemical gradient of protons and in the rate of respiration. We demonstrate that the overshoot is the result of the latter and unrelated to the former. We observed an irreversible decrease in the membrane potential as lactose accumulated in the presence of an exogenous energy source. We discuss the whole of our data in terms of an irreversible inactivation of the lactose carrier as a result of a possible interaction with the respiratory chain.  相似文献   

13.
Summary Cotton callus and suspension cultures developed from a cotton variety susceptible toXanthomonas malvacearum (E. F. Sm.) Dow, were grown on chemically defined media that contained one of the carbohydrate sources: 3% sucrose, 3% lactose, 3% maltose, 3% fructose, and 3% glucose. All cells were maintained on a medium with sucrose as the carbohydrate and subsequently transferred to media containing the above carbohydrates. Sucrose was the best carbon source for a high growth rate; however, cells growing on glucose, which was almost as good as sucrose, and cells growing on lactose did not turn brown when they reached the stationary phase of growth. A crude extract from callus tissue growing on lactose has a fivefold increase in β-galactosidase [EC 3.21.23] activity as compared with the extract from callus tissue growing on sucrose. When callus tissue growing on lactose was transferred tomedium containing sucrose, β-galactosidase activity decreased to the level as measured in cells maintained on sucrose. Callus cells growing on a lactose medium showed staining when treated with 5-bromo-4-chloro-3-indolyl β-D-galactopyranoside in which very heavy granular stains appeared. Cells growing on sucrose did not show the histochemical staining. These observations suggest that β-galactosidase is induced in cotton callus tissue that has been transferred from a medium containing sucrose to a medium containing lactose. This is journal article J-3704 of the Oklahoma Agricultural Experiment Station. The research was supported in part by a Presidential Challenge Grant from Oklahoma State University and the Oklahoma Agricultural Experiment Station.  相似文献   

14.
Anion/anion exchange in human neutrophils   总被引:5,自引:2,他引:3       下载免费PDF全文
Of the total one-way chloride fluxes (approximately 1.4 meq/liter cell water X min) in steady state human polymorphonuclear leukocytes bathed in 148 mM Cl media, approximately 70% behaves as self-exchange mediated by a nonselective anion carrier that is not inhibited by stilbene disulfonates. Five properties of this carrier-mediated exchange were investigated: substrate saturation is seen with respect to 36Cl influx as a function of the external Cl concentration [for normal-Cl cells, the apparent Km(Cl) is approximately 22 mM when Cl replaces para-amino- hippurate (PAH) and approximately 5 mM when Cl replaces glucuronate], and with respect to 36Cl efflux as a function of the concentration of internal Cl replacing PAH [apparent Km(Cl) congruent to 35 mM for cells bathed in 148 mM Cl]; there is trans stimulation of 36Cl influx by internal Cl (replacing PAH) with an apparent Km(Cl) congruent to 35 mM, and of 36Cl efflux by external Cl with an apparent Km(Cl) congruent to 22 mM (Cl replacing PAH) or approximately 5 mM (Cl replacing glucuronate); there is substrate competition between Cl and PAH, but the carrier appears devoid of affinity for glucuronate; influxes and effluxes mediated by the carrier are subject to competitive inhibition by extracellular alpha-cyano-4-hydroxycinnamate (CHC), with an apparent Ki congruent to 9 mM in Cl medium or approximately 1 mM in PAH medium (transport of the inhibitor itself is very slow); and internal Cl and external Cl or PAH undergo 1:1 countertransport, which is CHC sensitive. A simple equilibrium-competition model is proposed that accounts for all the extracellular ligand interactions presented for normal-Cl cells. Least-squares values of the carrier's true Michaelis constants for extracellular Cl, PAH, and CHC are 5.03 +/- 0.83, 50.3 +/- 14.9, and 0.29 +/- 0.09 mM, respectively.  相似文献   

15.
Methylamine is often found as a naturally-occurring metabolite in the rumen of sheep and cattle fed a variety of diets. The objective of this study was to examine the effect of methylamine on nitrogen-limited growth of Selenomonas ruminantium strain D grown on a nitrogen-free basal medium that would not support bacterial growth without the addition of a nitrogen source (ammonia, urea, glutamine, cysteine, or glutamate). In this medium S. ruminantium growth rates were significantly faster (P < 0.05) with 11 mM ammonia-nitrogen than any other nitrogen source and were slowest on glutamate-nitrogen (1 and 11 mM). Maximum optical density was greater (P < 0.05) for all nitrogen sources when the respective nitrogen source was increased from 1 mM to 11 mM nitrogen. Addition of 10 mM methylamine significantly decreased (P < 0.05) maximum optical density compared to the respective nitrogen source and concentration without added methylamine for cells grown on 1 mM glutamine-, 1 mM cysteine-, 11 mM ammonia-, 11 mM glutamine-, 11 mM cysteine- or 11 mM glutamate-nitrogen. It appears that ruminal methylamine could decrease extent of growth of ruminal selenomonads depending on the nitrogen source(s) available for nitrogen assimilation.  相似文献   

16.
Transport and hydrolysis of disaccharides by Trichosporon cutaneum.   总被引:1,自引:1,他引:0       下载免费PDF全文
Trichosporon cutaneum is shown to utilize six disaccharides, cellobiose, maltose, lactose, sucrose, melibiose, and trehalose. T. cutaneum can thus be counted with the rather restricted group of yeasts (11 to 12% of all investigated) which can utilize lactose and melibiose. The half-saturation constants for uptake were 10 +/- 3 mM sucrose or lactose and 5 +/- 1 mM maltose, which is of the same order of magnitude as those reported for Saccharomyces cerevisiae. Our results indicate that maltose shares a common transport system with sucrose and that there may be some interaction between the uptake systems for lactose, cellobiose, and glucose. Lactose, cellobiose, and melibiose are hydrolyzed by cell wall-bound glycosidase(s), suggesting hydrolysis before or in connection with uptake. In contrast, maltose, sucrose, and trehalose seem to be taken up as such. The uptake of sucrose and lactose is dependent on a proton gradient across the cell membrane. In contrast, there were no indications of the involvement of gradients of H+, K+, or Na+ in the uptake of maltose. The uptake of lactose is to a large extent inducible, as is the corresponding glycosidase. Also the glycosidases for cellobiose, trehalose, and melibiose are inducible. In contrast, the uptake of sucrose and maltose and the corresponding glycosidases is constitutive.  相似文献   

17.
Escherichia coli cells challenged with low or high concentrations of hydrogen peroxide are killed via two different mechanisms and respond with morphological changes which are also dependent on the extracellular concentration of the oxidant. Treatment with low concentrations (less than 2.5 mM) of H2O2 is followed by an extensive cell filamentation which is dependent on the level of H2O2 or the time of exposure. In particular, addition of 1.75 mM H2O2 results in a growth lag of approximately 90 min followed by partial increase in optical density, which was mainly due to the onset of the filamentous response. In fact, microscopic analysis of the samples obtained from cultures incubated with the oxidant for various time intervals has revealed that this change in morphology becomes apparent after 90 min of exposure to H2O2 and that the length of the filaments gradually increases following longer time intervals. Analysis of the ability of these cells to form colonies has indicated a loss in viability in the first 90 min of exposure followed by a gradual recovery in the number of cells capable of forming colonies. Measurement of lactate dehydrogenase in culture medium (as a marker for membrane damage) has revealed that a small amount of this enzyme was released from the cells at early times (less than 150 min) but not after longer incubation periods (300 min). Cells exposed to high concentrations of H2O2 (greater than 10 mM) do not filament and their loss of viability is associated with a marked reduction in cell volume. In fact, treatment with 17.5 mM H2O2 resulted in a time-dependent decrease of the optical density, clonogenicity, and cellular volume. In addition, these effects were paralleled by a significant release in the culture medium of lactate dehydrogenase thus suggesting that the reduced cell volume may be dependent on membrane damage followed by loss of intracellular material. This hypothesis is supported by preliminary results obtained in electron microscopy studies. In conclusion, this study further demonstrates that the response of E. coli to hydrogen peroxide is highly dependent on the concentration of H2O2 and further stresses the point that low or high concentrations of the oxidant result in the production of different species leading to cell death via two different mechanisms and/or capable of specifically affecting the cell shape.  相似文献   

18.
The hydrolysis of o-nitrophenyl-beta-D-galactopyranoside (ONPG) by BAL-31, a marine Pseudomonas that acts as a host for bacteriophage PM2, was studied with intact cells and with cell-free extracts. A transport system for ONPG in whole cells and a beta-galactosidase activity in extracts were evident for cells grown on lactose minimal medium. It was found that the addition of isopropylthio-beta-D-galactopyranoside (IPTG) to cells growing in rich medium induced an ONPG hydrolytic activity detectable in cell extracts but cryptic in whole cells. The existence of a transport system for IPTG, which remained cryptic for ONPG, became apparent from studies of the rates of induction of beta-galactosidase as a function of cell mass at different concentrations of IPTG. The main properties of beta-galactosidase and the lactose transport system of BAL-31 were studied in terms of how they were affected by pH, temperature, or by the presence of several sugars. IPTG competitively inhibits the hydrolysis of ONPG by cell extracts. In cells pregrown on lactose, IPTG slightly inhibits the transport of ONPG. Glucose, and with less efficiency lactose, also inhibits the hydrolysis of ONPG in cell extracts. The growth of cells on lactose minimal medium was inhibited by the addition of IPTG. A mechanism for this inhibition and for the inhibition of ONPG transport by IPTG is discussed.  相似文献   

19.
Growth of Escherichia coli strain MM6-13 (ptsI suc lacI sup), which as a suppressor of the succinate-negative phenotype, was inhibited by lactose. Cells growing in yeast extract-tryptone-sodium chloride medium (LB broth) were lysed upon the addition of lactose. In Casamino Acids-salts medium, lactose inhibited growth, but due to the high K+ content no lysis occurred. Lysis required high levels of beta-galctosidase and lactose transport activity. MM6, the parental strain of MM6-13, has lower levels of both of these activities and was resistant to lysis under these conditions. When MM6 was grown in LB broth with exogenous cyclic adenosine monophosphate, however, beta-galactosidase and lactose transport activities were greatly increased, and lysis occurred upon the addition of lactose. Resting cells of both MM6 and MM6-13 were lysed by lactose in buffers containing suitable ions. In the presence of MG2+, lysis was enhanced by 5 mM KCl and 100 mM NaCl. Higher slat concentrations (50 mM KCl or 200 mM NaCl) provided partial protection from lysis. In the absence of Mg2+, lysis occurred without KCl. Lactose-dependent lysis occurred in buffers containing anions such as sulafte, chloride, phosphate, or citrate; however, thiocyanate or acetate protected the cells from lysis. These data indicate that both cations and anions, as well as the levels of lactose transport and beta-galactosidase activity, are important in lysis.  相似文献   

20.
Choi HJ  Kim CS  Kim P  Jung HC  Oh DK 《Biotechnology progress》2004,20(6):1876-1879
Lactosucrose, a functional trisaccharide, was produced from lactose as an acceptor and sucrose as a fructosyl donor by whole cells harboring transfructosylation activity of levansucrase. Levansucrase-induced cells of Paenibacillus polymyxa were obtained in the medium containing sucrose, and the transfructosylation activity in the whole cell was optimized for lactosucrose production. The optimal cell concentration, substrates ratio, temperature, and pH were 2.0% (w/v), 22.5% (w/v) lactose and 22.5% (w/v) sucrose, 55 degrees C, and 6.0, respectively. Under these conditions, the whole cells produced approximately 17.0% (w/v) lactosucrose in 6 h of reaction time with a productivity of 2.8% (w/v)/h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号