首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The random copolymer Breox 50A and the hydroxypropyl starch Reppal PES 100 are quantified in aqueous two-phase systems of Breox/Reppal PES 100 and Breox/K 2 HPO 4 using HPLC with a reversed phase C 18 column and tetrahydrofuran /water (45:55 v/v).  相似文献   

2.
The partition behaviour of cutinase on poly(ethylene glycol) (PEG)–hydroxypropyl starch aqueous two-phase systems was characterized. The effect of molecular mass of PEG, the pH of the system and tie-line length on cutinase partition coefficient and cutinase yield to the top phase was investigated for systems prepared with a purified hydroxypropyl starch (Reppal PES 100) and a crude one (HPS). The effect of the presence of different salts, such as sodium chloride, sodium sulphate and ammonium sulphate, on cutinase partition was also studied. The results lead to the conclusion that aqueous two-phase systems composed of PEG and hydroxypropyl starch are not efficient in the purification of cutinase. In the majority of cases, the partition coefficients were very close to 1, with pH being the factor which affects most cutinase partition. Partition coefficients were significantly improved when salts were added to the systems. For PEG 4000–Reppal PES 100 [at pH 4.0; 0.5 M (NH4)2SO4], the partition coefficient for cutinase was 3.7, while a value of 12 was obtained for PEG 4000–HPS (at pH 4.0; 1 M NaCl). An isoelectric point (pI) of 7.8 was confirmed for cutinase by constructing a cross partition graphic from the results obtained in the experiments with different salts.  相似文献   

3.
An effective system has been developed for purification of apolipoprotein A-1 from Escherichia coli fermentation solution and human plasma using aqueous two-phase extraction and thermal-phase separation. The system included non-ionic surfactants (Triton or Tween) and as top phase-forming polymer a random copolymer of ethylene oxide (50%) and propylene oxide (50%), Breox PAG 50A 1000, was used. The bottom phase-forming polymer was either hydroxypropyl starch, Reppal PES 100 and PES 200, or hydroxyethyl starch, Solfarex A 85. The top-phase-forming polymer and the surfactants are thermoseparating in water solution, i.e., when heated a water phase and a polymer/surfactant phase are formed. Recombinant apolipoprotein A-1, the Milano variant, was extracted from E. coli fermentation solution in a primary Breox-starch phase system followed by thermal separation of the Breox phase where the target protein was recovered in the water phase. Both in the Breox-starch system and in the water-Breox system Triton X-100 was partitioned to the Breox phase. The addition of non-ionic surfactants to the Breox-starch system had strong effect on the purification and yield of the amphiphilic apolipoprotein A-1. In a system containing 17% Breox PAG 50A 1000, 12% Reppal PES 100 and addition of 1% Triton X-100 the purification factor was 7.2, and the yield 85% after thermal separation of the Breox phase. Recycling of copolymer and surfactant was possible after thermal separation of copolymer phase. Approximately 85% of the copolymer and surfactant could be recycled in each extraction cycle. DNA could be strongly partitioned to the starch phase in the primary-phase system. This resulted in a 1000-fold reduction of E. coli DNA in the apolipoprotein A-1 solution obtained after thermoseparation. In extraction from human plasma containing low concentrations of apolipoprotein A-1, it was possible to reach a purification factor of 420 with 98% yield. By reducing the volume ratio to 0.1 Apo A-1 could be concentrated in a small volume of top phase (concentration factor 10) with a yield of 85% and a purification factor of 110.  相似文献   

4.
Affinity extraction of dye- and metal ion-binding proteins, respectively, in a polyvinylpyrrolidone (PVP40)-Reppal PES 100 two-phase system was investigated. Due to the ability of PVP to complex azo dyes and inorganic ions, covalent coupling of the ligands was not essential. Cibacron Blue F3GA was used as the ligand for extraction of lactate dehydrogenase (LDH) from porcine muscle, while copper ions were used for extraction of B. stearothermophilus LDH with a fusion tag of six histidine residues (His6-LDH) from recombinant Escherichia coli homogenate. The binding strength of the enzymes to their respective ligands was only slightly reduced in the presence of PVP. The partition coefficient of Cibacron Blue and Cu2+ ions in the two-phase systems composed of different concentrations of PVP and Reppal was in the range of 20-30, with maximal partitioning being observed in the 17% (w/w) PVP40-10% Reppal PES100 system. Only a minor leakage of the ligands to the bottom phase was observed with time. The partitioning of porcine LDH to the PVP phase was increased 100-fold, and a maximal recovery of 89% was obtained in the two-phase system loaded with 0.2% (w/w) Cibacron Blue. The enzyme was quantitatively recovered with further purification from the PVP-dye phase using a secondary extraction step with 170 mM phosphate or alternatively with 100 mM phosphate containing NADH or NaCl. A more than 10-fold increase in the partition coefficient of His6-LDH was achieved in the two-phase system loaded with 0.4% (w/w) copper sulfate compared to the system lacking the metal ions. The enzyme was also back-extracted into phosphate phase in the presence of imidazole.  相似文献   

5.
This work describes the partition of a Schistosoma mansoni tegumental antigen produced by a recombinant Escherichia coli strain using an aqueous two-phase system (ATPS) composed of polyethylene glycol (PEG) and purified hydroxypropyl-starch (Reppal PES 100). The effects of the polymer molecular weight, tie line length and pH on antigen partitioning were investigated. The detection of the antigen in both phases was determined by ELISA. The system composed of PEG 8000 (5.1% w/w) and Reppal PES 100 (13.0% w/w) led to a yield of 92% and a purification factor of 12 concerning the antigen in the PEG-rich phase. It was observed that antigen partition in ATPSs was strongly affected by the pH and tie line length. In addition, it was possible in a single step, to remove the cell debris, which precipitated at the interface of the system.  相似文献   

6.
The thermoseparation of aqueous solutions of Breox 50 A 1000, an ethylene oxide–propylene oxide 50:50 (w/w) random copolymer, was studied. The cloud-point diagram for Breox in water solution and the effects of electrolytes and surfactants on the cloud-point temperature (CPT) were determined. The Breox concentration in both phases after the thermoseparation was followed with a reversed-phase HPLC method. The effects of separation temperature and additives on phase composition were evaluated.  相似文献   

7.
Genetic engineering has been used to construct hydrophobically modified fusion proteins of cutinase from Fusarium solani pisi and tryptophan-containing peptides. The aim was to enhance the partitioning of the tagged protein in a novel aqueous two-phase system formed by only one water-soluble polymer. The system was based on a hydrophobically modified random copolymer of ethylene oxide (EO) and propylene oxide (PO) units, HM-EOPO, with myristyl groups (C(14)H(29)) at both ends. The HM-EOPO polymer is strongly self-associating and has a lower critical solution temperature (cloud point) at 12 degrees C in water. At temperatures above the cloud point a two-phase system is formed with a water top phase and a polymer-enriched bottom phase. By adding a few percent of hydroxypropyl starch polymer, Reppal PES 200, to the system, it is possible to change the densities of the phases so the HM-EOPO-enriched phase becomes the top phase and Reppal-enriched phase is the bottom phase. Tryptophan-based peptides strongly preferred the HM-EOPO rich phase. The partitioning was increased with increasing length of the peptides. Full effect of the tag as calculated from peptide partitioning data was not found in the protein partitioning. When a short spacer was introduced between the protein and the tag the partitioning was increased, indicating a better exposure to the hydrophobic core of the polymer micelle. By adding a hydrophilic spacer between the protein and trp-tag, it was possible to increase the partitioning of cutinase 10 times compared to wild-type cutinase partitioning. By lowering the pH of the system and addition of NaCl, the partitioning of tagged protein was further increased towards the HM-EOPO phase. After isolating the HM-EOPO phase, the temperature was increased and the protein was back-extracted from the HM-EOPO phase to a fresh water phase.  相似文献   

8.
 In order to enhance the productivity of lactic acid and reduce the end-product inhibition of fermentation, the partitioning and growth of four different strains of lactic acid bacteria in three different aqueous two-phase systems were studied. Polyethyleneglycol/ dextran, polyethyleneglycol/hydroxypropyl starch polymer (HPS), and a random copolymer of ethylene oxide and propylene oxide (EO-PO)/HPS were used as polymer systems. One strain each of Lactococcus lactis subsp. lactis and of Lactobacillus delbrueckii subsp. delbrueckii partitioned completely to the interface and bottom phase in two-phase systems with low polymer concentrations of EO-PO/HPS100 and EO-PO/ HPS200. The growth and production of lactic acid by two of three L. lactis strains in a two-phase system with 5.5% (w/w) EO-PO and 12.0% (w/w) HPS100 were reduced by less than 10% compared with a reference fermentation in a normal growth medium. The viability of L. lactis subsp. lactis ATCC 19435 was maintained for at least 50 h and with four top-phase replacements during extractive fermentation in the EO-PO/HPS100 system. Moreover, when cell density reached the stationary phase in the first extractive fermentation, the lactate production in this aqueous two-phase system was maintained. Received: 2 October 1995/Received revision: 16 January 1996/Accepted: 22 January 1996  相似文献   

9.
Growing peroxidase utilisation in different industries encourages the search for high benefit/cost ratio purification methods such as aqueous two-phase partition. In this way, the partitioning behaviour of peroxidase from Armoracia rusticanaroots in polyvinylpirrolidone/Reppal and polyvinylpirrolidone/salt aqueous two-phase systems was investigated. Based on these results, a two-step purification process was developed. In the first system (polyvinylpyrrolidone K30/Reppal PES 200, pH 7.0), cell debris and some contaminating proteins were shifted to the bottom phase while peroxidase concentrated in the top phase. After discarding the bottom phase, the second step involved addition of magnesium sulphate thus forming a second aqueous two-phase system. At this step, the enzyme was extracted into the salt-rich bottom phase. The overall yield was 75% and the purification factor 7.3.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

10.
The partitioning of bovine serum albumin (BSA) in a polyethylene glycol 3350 (8% w/w)–dextran 37 500 (6% w/w)–0.05 M phosphate aqueous two-phase was investigated at different pHs, at varying concentrations of sodium chloride at 20°C. The effect of NaCl concentration on the partition coefficient of BSA was studied for the PEG–dx systems with initial pH values of 4.2, 5.0, 7.0, 9.0, and 9.8. The NaCl concentrations in the phase systems with constant pH value were 0.06, 0.1, 0.2, 0.3, and 0.34 M. It was observed that the BSA partition coefficient decreased at concentrations smaller than 0.2 M NaCl and increased at concentrations greater than 0.2 M NaCl for all systems with initial pHs of 4.2, 5.0, 7.0, 9.0, and 9.8. It was also seen that the partition coefficient of BSA decreased as the pH of the aqueous two-phase systems increased at any NaCl salt concentration studied.  相似文献   

11.
A whole broth extraction using an aqueous two-phase system (ATPS) composed by 5% (w/w) PEG 3350 and 15% (w/w) phosphate was used for the scale-up extraction and isolation of a recombinant Fusarium solani pisi cutinase, an extracellular mutant enzyme expressed in Saccharomyces cerevisiae, containing a fusion peptide (WP)4. The experiments were carried out at three different scales (10 ml, 1 l and 30 l). Mixing time and stirrer speed were evaluated at lab scale (1 l) with two different system compositions. Stirrer speed between 400 and 800 rpm and mixing time between 2 and 5 min led to the highest recoveries of cutinase. In all cases, inclusive of pilot scale (30 l), the equilibrium was reached after a few minutes. The performance of ATPS was reproducible within the scale range of 0.010–30 l and provided a standard deviation of the yield lower than 8%, leading to (i) a partition coefficient over 50, (ii) a yield over 95% and (iii) a concentration factor over 5. The fusion of the peptide (WP)4 to the cutinase protein enabled a 400 increase of the partition coefficient relative to the wild-type strain.  相似文献   

12.
Aqueous micellar two-phase system (AMTPS) is an extractive technique of biomolecule, where it is based on the differential partitioning behavior of biomolecule between a micelle-rich and a micelle-poor phase. In this study, an AMTPS composed of a nonionic surfactant, Triton X-100 (TX-100) was used for purifying a bacteriocin-like inhibitory substance (BLIS) derived from Pediococcus acidilactici Kp10. The influences of the surfactant concentration and the effect of additives on the partitioning behavior and activity yield of the BLIS were investigated. The obtained coexistence curves showed that the mixtures of solutions composed of different surfactant concentrations (5–30% w/w) and 50% w/w crude load were able to separate into two phases at temperatures of above 60 °C. The optimum conditions for BLIS partitioning using the TX-100-based AMTPS were: TX-100 concentration of 22.5% w/w, CFCS load of 50% w/w, incubation time of 30 min at 75 °C, and back-extraction using acetone precipitation. This optimal partitioning resulted in an activity yield of 64.3% and a purification factor of 5.8. Moreover, the addition of several additives, such as sorbitol, KCl, dioctyl sulfosuccinate sodium salt, and Coomassie® Brilliant Blue, demonstrated no improvement in the BLIS separation, except for Amberlite® resin XAD-4, where the activity yield was improved to 70.3% but the purification factor was reduced to 2.3. Results from this study have demonstrated the potential and applicability of TX-100-based AMTPS as a primary recovery method for the BLIS from a complex fermentation broth of P. acidilactici Kp10. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2719, 2019  相似文献   

13.
A thermoseparating aqueous two-phase system for extraction of a recombinant cutinase fusion protein from Escherichia coli homogenate has been scaled up to pilot scale. The target protein ZZ-cutinase-(WP)(4) was produced in a fed batch process at 500 l to a concentration of 12% of the total protein and at a cell concentration of 19.7 g l(-1). After harvest and high-pressure homogenisation a first extraction step was performed in an EO(50)PO(50) (50% (w/w) ethylene oxide and 50% (w/w) propylene oxide) thermopolymer/amylopectin rich Waxy barley starch system. The (WP)(4) tag was used for enhanced target protein partitioning to the EO(50)PO(50) phase while the cell debris was collected in the starch phase. A second extraction step followed where the recovered EO(50)PO(50) phase from the first step was supplemented with a non-ionic detergent (C(12-18)EO(5)) and heated to the cloud point (CP) temperature (45 degrees C). One polymer-rich liquid phase and one almost pure aqueous phase were formed. The target protein could be obtained in a water phase after the thermal phase separation at a total recovery over the extraction steps of 71% and a purification factor of 2.5. We were able to demonstrate that a disk-stack centrifugal separator could be adapted for rapid separation of both primary and thermoseparated phase systems.  相似文献   

14.
《Process Biochemistry》2010,45(3):369-374
The recovery and purification of lysozyme from hen egg white has been investigated in an aqueous two-phase systems composed of thermoseparating random copolymers of ethylene oxide (EO), propylene oxide (PO) and potassium phosphate. In the primary extraction step lysozyme was satisfactorily partitioned to the top polymer-rich phase in a system composed of 40% (w/w) EO50PO50, 10% (w/w) potassium phosphate, and 0.85 M sodium chloride at pH 9.0, diluted 3-fold with crude egg white, where contaminating proteins were discarded in the bottom phosphate-rich phase. After the primary phase separation the upper EO50PO50 phase was removed and subjected to temperature-induced (65 °C) phase separation, which resulted in the partitioning of pure lysozyme to the top water phase. The separation system was found to be efficient in achieving the purification of lysozyme in a high yield of 85% and specific activity of 32,300 U/mg of protein, with a purification factor of 16.9 and a concentration of lysozyme in the water phase of 2.3 g/l in two extraction steps.  相似文献   

15.
The main drawback when using aqueous two-phase systems for macromolecule purification is the high cost of most polymers used. The purification of an enzyme, alcohol dehydrogenase, from a crude extract of Saccharomyces cerevisiae was tested in systems composed of poly(ethylene glycol) and a crude hydroxypropyl starch or Reppal PES 100, a purified fraction of hydroxypropyl starch. Purification factors measured for the enzyme were very similar in both systems (between 0.8 and 1.4 for both systems in the upper phase). However, systems composed of Reppal PES present a greater recovery of enzyme, between 77% and 100% versus 60% and 100%, while systems composed of crude hydroxypropyl starch exhibit a larger Δlog K for the tested ligand, 1.26 versus 0.81.  相似文献   

16.
The Fusarium solani pisi lipase cutinase has been genetically engineered to investigate the influence of C-terminal peptide extensions on the partitioning of the enzyme in PEG-salt based aqueous two-phase bioseparation systems. Seven different cutinase lipase variants were constructed containing various C-terminal peptide extensions including tryptophan rich peptide tags ((WP)(2) and (WP)(4)), positively ((RP)(4)) and negatively ((DP)(4)) charged tags as well as combined tags with tryptophan together with either positively ((WPR)(4)) or negatively ((WPD)(4)) charged amino acids. The modified cutinase variants were stably produced in Escherichia coli as secreted to the periplasm from which they were efficiently purified by IgG-affinity chromatography employing an introduced N-terminal IgG-binding ZZ affinity fusion partner present in all variants. Partitioning experiments performed in a PEG 4000/sodium phosphate aqueous two-phase system showed that for variants containing either (WP)(2) or (WP)(4) peptide extensions, 10- to 70-fold increases in the partitioning to the PEG rich top-phase were obtained, when compared to the wild type enzyme. An increased partitioning was also seen for cutinase variants tagged with both tryptophans and charged amino acids, whereas the effect of solely charged peptide extensions was relatively small. In addition, when performing partitioning experiments from cell disintegrates, the (WP)(4)-tagged cutinase showed a similarly high PEG-phase partitioning, indicating that the effect from the peptide tag was unaffected by the background of the host proteins. Taken together, the results show that the partitioning of the recombinantly produced cutinase model enzyme could be significantly improved by relatively minor genetic engineering and that the effects observed for purified proteins are retained also in an authentic whole cell disintegrate system. The results presented should be of general interest also for the improvement of the partitioning properties of other industrially interesting proteins including bulk enzymes.  相似文献   

17.
The surface properties of a protein are often crucial for recognition and interaction with other molecules. Important functional residues can be identified by mutational analysis. There is a need for rapid methods to study protein surfaces and surface changes due to mutations. Partitioning in aqueous two-phase systems has the potential to be used in this respect since protein partitioning depends on the surface properties of the protein. The influence of surface-exposed amino acid residues in protein partitioning has been studied with cutinase variants, which differed in one or several amino acid residues as a result of site-directed mutagenesis. The solvent accessibility of the mutated residues was determined with a computer program, Graphical Representation and Analysis of Surface Properties. The aqueous two-phase system was composed of dextran and a random copolymer of ethylene oxide and propylene oxide. It was shown, for the first time, to what extent surface-exposed amino acid residues influence the partition coefficient in an aqueous two-phase system. The effect on partitioning could be described only taking into account solvent accessibility and type of residue substitution. The results demonstrate that the system can be used to detect conformational changes in mutant proteins since the expected effect on partitioning due to a mutation can be calculated. The aqueous two-phase system used here does indeed provide a rapid and convenient method to study protein surfaces and slight surface changes due to mutations.  相似文献   

18.
Genetic engineering has been used to construct fusion proteins of Fusarium solani pisi cutinase and tryptophan-based tags, expressed in Saccharomyces cerevisiae, to increase the partitioning in aqueous two-phase systems. The separation systems were composed of thermoseparating polymers (random copolymers of ethylene oxide and propylene oxide, EOPO) and detergents (C(12)EO(n)). In this study, the fluorescence behaviour of the peptide-tagged protein, free peptide tag and tryptophan was investigated. The tryptophan-tagged proteins, cutinase-(WP)(4) and cutinase-TGGSGG-(WP)(4), showed emission spectra similar to the free peptides and tryptophan, indicating solvent exposure of the tag. The influence of polymers and detergents on the fluorescence of tagged proteins was examined. When peptides and tagged proteins were exposed to polymer, a slight blue shift of the emission maximum was observed. Larger blue shifts of the emission maximum were observed when C(12)EO(n) detergents were utilised. The results correlate with aqueous two-phase partitioning where addition of C(12)EO(n) detergents results in more extreme partitioning compared to systems containing only polymers. Dynamic light scattering (DLS) measurements of the EOPO copolymers were carried out, showing that the polymers did not aggregate at concentrations used in aqueous two-phase systems. Quenching of fluorescence with iodide for both proteins and peptide tags was studied. Plots according to the Stern-Volmer equation resulted in a linear fit, indicating exposed tryptophan residues for both free peptides and fusion proteins. The quenching constants were similar for both tagged protein and free peptide tag. The fluorescence results indicated that the tryptophan residues in the tag were exposed to the solvent and could interact with detergents and polymers in the two-phase systems.  相似文献   

19.
During recombinant Escherichia coli fermentation with high expression levels, inclusion bodies are often formed. Aqueous two-phase systems have been used in the presence of urea for the initial recovery steps. To investigate phase behavior of such systems we determined phase diagrams of poly(ethylene glycol) (PEG)/sodium sulfate/urea/water and PEG/dextran T-500 (DEX)/urea/phosphate buffer/water at different concentrations of urea and different molecular weight of PEG. PEG/Na2SO4 aqueous two-phase systems could be obtained including up to 30% w/w urea at 25 degrees C and PEG/dextran T-500 up to 35% w/w urea. The binodial was displaced toward higher concentrations with increasing urea concentrations. The partition coefficient of urea was near unity. An unstable mutant of T4-lysozyme with an amino acid replacement in the core (V149T) was used to analyze the effect of phase components on the conformation of the enzyme. We showed that partitioning of tryptophan was not dependent on the concentration of urea in the phase system.  相似文献   

20.
Aqueous two-phase systems are composed of aqueous solutions of either two water-soluble polymers, usually polyethylene glycol (PEG) and dextran (Dx), or a polymer and a salt, usually PEG and phosphate or sulfate. Partitioning of proteins in such systems provides a powerful method for separating and purifying mixtures of biomolecules by extraction. If one of the phase forming polymers is a crosslinked gel, then the solution-controlled gel sorption may be considered as a modification of aqueous two-phase extraction. Since PEG/dextran systems are widely used in aqueous two-phase extraction and dextran gels (Sephadex) are common chromatographic media, we choose a PEG/dextran gel system as a model system in this study. The partitioning behavior of pure bovine serum albumin (BSA) in PEG/dextran gel systems is investigated to see the effects of variations in PEG and NaCl concentrations on the partition coefficient K. By making use of the Box-Wilson experimental design, K is shown to be maximized at 9.8 (%, w/w) PEG and 0.2 M NaCl concentrations, respectively, as 182.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号