首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have isolated and characterized 31 mutations in the ompC gene which allow Escherichia coli to grow on maltotriose (Dex+) in the absence of the LamB and OmpF porins. These ompC(Dex) mutations include single-base-pair substitutions, small deletions, and small insertions. DNA sequence analysis shows that all of the alterations occur within the coding region for the first 110 amino acids of mature OmpC. The 26 independent point mutations repeatedly and exclusively alter residues R37, R74, and D105 of mature OmpC. In each case, a charged amino acid is changed to an uncharged residue. Biochemical and physiological tests suggest that these alterations increase the size of the pore channel. Starting with three different ompC(Dex) strains with alterations affecting R74, we isolated mutants that could grow on maltohexose (Hex+). These mutants each contained a second alteration in the ompC gene involving residues R37, D105, or R124. The combined effects on pore function of the two mutations appear to be additive. These experiments suggest that we have identified the important residues of OmpC peptide involved in pore function. On the basis of these mutations and general rules for membrane protein folding, a model for the topology of the OmpC protein is proposed.  相似文献   

3.
Phage attachment sites on bacterial cell surfaces are provided by the exposed regions of outer membrane proteins and lipopolysaccharide (LPS). We have identified surface exposed residues of OmpC that are important for phage binding. This was accomplished by employing a genetic scheme in which two simultaneous selections enriched for ompC mutants defective in phage attachment, but retained functional channels. Mutational alterations were clustered in three regions of the OmpC protein. These regions also showed the greatest divergence from the analogous regions of the highly related OmpF and PhoE proteins. The majority of alterations (8 out of 11) occurred in a region of OmpC that is predicted to form a large exterior loop (loop 4). Interestingly, while the removal of this loop prevented phage binding, the deletion conferred enhanced channel activities.   Another type of phage-resistant mutants synthesized defective LPS molecules. Biochemical analysis of mutant LPS revealed it to be of the Re-type LPS, lacking the heptose moieties from the LPS inner core. As a result of this LPS defect, many outer membrane proteins were present in somewhat reduced levels. The phage resistance seen in these mutants could be a result of both the presence of defective LPS and reduced OmpC levels.  相似文献   

4.
The expression of assembly-defective outer membrane proteins can confer lethality if they are not degraded by envelope proteases. We report here that the expression of a mutant OmpC protein, OmpC(2Cys), which forms disulfide bonds in the periplasm due to the presence of two non-native cysteine residues, is lethal in cells lacking the major periplasmic protease, DegP. This lethality is not observed in dsbA strains that have diminished ability to form periplasmic disulfide bonds. Our data show that this OmpC(2Cys)-mediated lethality in a degP::Km(r) dsbA(+) background can be reversed by a DegP variant, DegP(S210A), that is devoid of its proteolytic activity but retains its reported chaperone activity. However, DegP(S210A) does not reverse the lethal effect of OmpC(2Cys) by correcting its assembly but rather by capturing misfolded mutant OmpC polypeptides and thus removing them from the assembly pathway. Displacement of OmpC(2Cys) by DegP(S210A) also alleviates the negative effect that the mutant OmpC protein has on wild-type OmpF.  相似文献   

5.
Escherichia coli mutants with an altered sensitivity to cecropin D.   总被引:2,自引:0,他引:2  
Cecropins are a family of small, basic antibacterial polypeptides which can be isolated from pupae of immunized Lepidoptera. They are active against both gram-negative and gram-positive bacteria. We studied a mutant of Escherichia coli, strain SB1004, which is more sensitive to cecropin D than is the parental strain. The mutant was selected as resistant to a host range mutant of a Serratia marcescens phage. When the protein composition of the outer membrane was examined, strain SB1004 and some other phage-resistant mutants were found to be deficient in the OmpC protein. It was concluded that the OmpC protein is the receptor of the phage. Strain SB1004 was found to differ from other ompC mutants in being especially sensitive to hydrophobic antibiotics and to cecropin D. Furthermore, strain SB1004 has a tendency for spontaneous autolysis. A genetic analysis showed the mutations in strain SB1004 and a suppressor mutant to map in the ompC region. The activity of cecropin D against different strains of E. coli was specifically enhanced when divalent cations were absent. No such effect was found with cecropins A and B, which are less hydrophobic than the D form.  相似文献   

6.
The LamB protein is normally required for the uptake of maltodextrins. Starting with a LamB- OmpF- strain, we have isolated mutants that will grow on maltodextrins. The mutation conferring the Dex+ phenotype in the majority of these mutants has been mapped to the ompC locus. These mutants, unlike LamB- OmpF- strains, grew on maltotriose and maltotetraose, but not on maltopentaose, and showed a significantly higher rate of [14C]maltose uptake than the parent strain did. In addition, these mutants showed increased sensitivity to certain beta-lactam antibiotics and sodium dodecyl sulfate, but did not exhibit an increase in sensitivity to other antibiotics and detergents. The nucleotide sequence of these mutants has been determined. In all cases, residue 74 (arginine) of the mature OmpC protein was affected. The results suggest that this region of the OmpC protein is involved in the pore domain and that the alterations lead to an increased pore size.  相似文献   

7.
8.
9.
Human chorionic gonadotropin (hCG) consists of two noncovalently joined alpha and beta subunits similar to the other glycoprotein hormones. To study the function of the individual disulfide bonds in subunit assembly and secretion, site-directed mutagenesis was used to convert the 12 cysteine (Cys) residues in the beta subunit of hCG to either alanine or serine. Both cysteines of proposed disulfide pairs were also mutated. These mutant hCG beta genes were transfected alone or together with the wild-type alpha gene into Chinese hamster ovary cells. Only 3-10% assembly could be achieved with derivatives containing single Cys mutations at positions 26, 110, 72, and 90, whereas no assembly was detected with the other 8 mutants. However, double mutations of pairs 26-110 or 23-72 showed increased dimer formation (11 and 36%, respectively). The secretion rate of individual mutants varied significantly. Whereas the Cys-23 and 72 mutants were secreted normally (t1/2 = 140-190 min), the Cys-26 mutant was secreted faster (t1/2 = 70 min), and the other 9 mutants were secreted slower (t1/2 = 280-440 min); mutations of both Cys at 26 and 110 caused much faster secretion (t1/2 = 34 min). Although the secretion rate of these mutants differed, they were quantitatively recovered in the medium except for mutant Cys-88, Cys-23-72, and Cys-34-88 (40, 55, and 10% secreted, respectively). Thus, interruption of any disulfide bond in the hCG beta subunit alters the structure sufficiently to block dimer formation and in some cases slow secretion, although the stability for most of the mutant hCG beta subunits is not greatly affected. The data indicate that interruption of any hCG beta disulfide bond generates different structural forms that are unable to assemble with the alpha subunit, and that the structural requirements for stability and assembly are different.  相似文献   

10.
In a speG-disrupted Escherichia coli mutant, which cannot metabolize spermidine to acetylspermidine, addition of spermidine to the medium caused a decrease in cell viability at the late stationary phase of growth. There were parallel decreases in the levels of ribosome modulation factor (RMF), the sigma(38) subunit of RNA polymerase, and the outer membrane protein C (OmpC). To clarify that these three proteins are strongly involved in cell viability, the rmf, rpoS (encoding sigma(38)), and ompC genes were disrupted. Viability of the triple mutant decreased to less than 1% of normal cells. The triple mutant had a reduced cell viability compared to any combination of double mutants, which also had a reduced cell viability. The single rmf and rpoS, but not ompC, mutant only slightly reduced cell viability. The results indicate that cooperative functions of these three proteins are necessary for cell viability at the late stationary phase. The triple mutant had a reduced level of ribosomes and of intracellular cations.  相似文献   

11.
AIMS: To investigate the requirement of outer membrane porins for osmotic adaptation at alkaline pH in Escherichia coli. METHODS AND RESULTS: Escherichia coli mutants deficient in ompC, ompF and both genes were constructed and the growth of these mutants was observed at alkaline pH. The growth rate of the mutant deficient in both ompC and ompF was slower than that of the wild type and mutants deficient in one of these genes under hyperosmotic stress at pHs above 8.0. The decreased rate was recovered when a cloned ompC was introduced to the mutant, but the growth recovery with a cloned ompF was partial. Such growth diminution was not observed at pHs below 8.0. CONCLUSION: OmpC and OmpF were shown to participate in hyperosmotic adaptation at alkaline pH in E. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first report to demonstrate that OmpC and OmpF are required for hyperosmotic adaptation at pHs above 8.0, but not below 8.0.  相似文献   

12.
Macrophages recognize, adhere to, and phagocytose Salmonella typhimurium. The major outer membrane protein OmpC is a candidate ligand for macrophage recognition. To confirm this we used transposon mutagenesis to develop an ompC-deficient mutant in a known virulent strain of S. typhimurium; mutant and wild type were compared in macrophage adherence and association assays. Radiolabeled wild type S. typhimurium bound to macrophages at five-fold higher levels than did the ompC mutant. In association assays, macrophages in monolayers bound and internalized three-fold more wild type than mutant, while macrophages in suspension bound and internalized 40-fold more wild type than mutant. The ompC gene of our test strain of S. typhimurium contains several discrete differences compared with the ompC genes of Salmonella typhi and Escherichia coli. The deduced OmpC amino acid sequence of S. typhimurium shares 77 and 98% identity with OmpC amino acid sequence of E. coli and S. typhi, respectively. Evidence from this study supports a role for the OmpC protein in initial recognition by macrophages and distinguishes regions of this protein that potentially participate in host-cell recognition of bacteria by phagocytic cells.  相似文献   

13.
When expressed in Escherichia coli, the 15 Klebsiella oxytoca pul genes that encode the so-called Pul secreton or type II secretion machinery promote pullulanase secretion and the assembly of one of the secreton components, PulG, into pili. Besides these pul genes, efficient pullulanase secretion also requires the host dsbA gene, encoding a periplasmic disulfide oxidoreductase, independently of disulfide bond formation in pullulanase itself. Two secreton components, the secretin pilot protein PulS and the minor pseudopilin PulK, were each shown to posses an intramolecular disulfide bond whose formation was catalyzed by DsbA. PulS was apparently destabilized by the absence of its disulfide bond, whereas PulK stability was not dramatically affected either by a dsbA mutation or by the removal of one of its cysteines. The pullulanase secretion defect in a dsbA mutant was rectified by overproduction of PulK, indicating reduced disulfide bond formation in PulK as the major cause of the secretion defect under the conditions tested (in which PulS is probably present in considerable excess of requirements). PulG pilus formation was independent of DsbA, probably because PulK is not needed for piliation.  相似文献   

14.
Transposon mutagenesis of Bordetella pertussis was used to discover mutations in the cytochrome c biogenesis pathway called system II. Using a tetramethyl-p-phenylenediamine cytochrome c oxidase screen, 27 oxidase-negative mutants were isolated and characterized. Nine mutants were still able to synthesize c-type cytochromes and possessed insertions in the genes for cytochrome c oxidase subunits (ctaC, -D, and -E), heme a biosynthesis (ctaB), assembly of cytochrome c oxidase (sco2), or ferrochelatase (hemZ). Eighteen mutants were unable to synthesize all c-type cytochromes. Seven of these had transposons in dipZ (dsbD), encoding the transmembrane thioreduction protein, and all seven mutants were corrected for cytochrome c assembly by exogenous dithiothreitol, which was consistent with the cytochrome c cysteinyl residues of the CXXCH motif requiring periplasmic reduction. The remaining 11 insertions were located in the ccsBA operon, suggesting that with the appropriate thiol-reducing environment, the CcsB and CcsA proteins comprise the entire system II biosynthetic pathway. Antiserum to CcsB was used to show that CcsB is absent in ccsA mutants, providing evidence for a stable CcsA-CcsB complex. No mutations were found in the genes necessary for disulfide bond formation (dsbA or dsbB). To examine whether the periplasmic disulfide bond pathway is required for cytochrome c biogenesis in B. pertussis, a targeted knockout was made in dsbB. The DsbB- mutant makes holocytochromes c like the wild type does and secretes and assembles the active periplasmic alkaline phosphatase. A dipZ mutant is not corrected by a dsbB mutation. Alternative mechanisms to oxidize disulfides in B. pertussis are analyzed and discussed.  相似文献   

15.
The DNA sequence of the ompC gene which encodes one of the outer membrane porins has been determined. The gene appears to encode a secretory precursor of OmpC protein consisting of a total of 367 amino acid residues with a signal peptide of 21 amino acid residues at its NH2-terminal end. The 5' end noncoding region including the promoter of the ompC gene is extremely [A-T]-rich, and the codon usage in the ompC gene is unusual as are those in genes for other abundant outer membrane proteins. The promoter sequence of the ompC gene was compared with that of the ompF gene, both of which are controlled by the osmoregulatory operon, ompB. The deduced amino acid sequence of the OmpC protein showed extensive homology with that of the other porins (OmpF and PhoE proteins). The homology in the primary amino acid sequences, as well as the coding DNA sequences among the porins, indicates that the structural genes for the three porins evolved from a common ancestral gene. Comparison of the amino acid sequences among the OmpC, OmpF, and PhoE porins will be discussed with regard to structure and function.  相似文献   

16.
17.
A novel type of osmoregulatory mutant of Escherichia coli K-12 exhibiting constitutive expression of the ompC gene was isolated and characterized at the molecular level. In this particular mutant (cec; constitutive expression of OmpC), an insertion sequence (IS-1) was found to be located at right upstream of the regulatory sequence for the ompC promoter. We demonstrate that the IS1 insertion observed in the cec mutant does not provide the ompC gene with an artificial promoter, but rather perturbs normal regulation of the ompC promoter, which is mediated by the regulatory gene, ompR.  相似文献   

18.
The P ring of the bacterial flagellar motor consists of multiple copies of FlgI, a periplasmic protein. The intramolecular disulfide bond in FlgI has previously been reported to be essential for P-ring assembly in Escherichia coli, because the P ring was not assembled in a dsbB strain that was defective for disulfide bond formation in periplasmic proteins. We, however, found that the two Cys residues of FlgI are not conserved in other bacterial species. We then assessed the role of this intramolecular disulfide bond in FlgI. A Cys-eliminated FlgI derivative formed a P ring that complemented the flagellation defect of our DeltaflgI strain when it was overproduced, suggesting that disulfide bond formation in FlgI is not absolutely required for P-ring assembly. The levels of the mature forms of the FlgI derivatives were significantly lower than that of wild-type FlgI, although the precursor protein levels were unchanged. Moreover, the FlgI derivatives were more susceptible to degradation than wild-type FlgI. Overproduction of FlgI suppressed the motility defect of DeltadsbB cells. Additionally, the low level of FlgI observed in the DeltadsbB strain increased in the presence of l-cystine, an oxidative agent. We propose that intramolecular disulfide bond formation facilitates the rapid folding of the FlgI monomer to protect against degradation in the periplasmic space, thereby allowing its efficient self-assembly into the P ring.  相似文献   

19.
Each subunit of the nicotinic acetylcholine receptor (AChR) contains two conserved cysteine residues, which are known to form a disulfide bond, in the N-terminal extracellular domain. The role of this retained structural feature in the biogenesis of the AChR was studied by expressing site-directed mutant alpha and beta subunits together with other normal subunits from Torpedo californica AChR in Xenopus oocytes. Mutation of the cysteines at position 128 or 142 in the alpha subunit, or in the beta subunit, did not prevent subunit assembly. All Cys128 and Cys142 mutants of the alpha and beta subunits were able to associate with coexpressed other normal subunits, although associational efficiency of the mutant alpha subunits with the delta subunit was reduced. Functional studies of the mutant AChR complexes showed that the mutations in the alpha subunit abolished detectable 125I-alpha-bungarotoxin (alpha-BuTX) binding in whole oocytes, whereas the mutations in the beta subunit resulted in decreased total binding of 125I-alpha-BuTX and no detectable surface 125I-alpha-BuTX binding. Additionally, all mutant subunits, when co-expressed with the other normal subunits in oocytes, produced small acetylcholine-activated membrane currents, suggesting incorporation of only small numbers of functional mutant AChRs into the plasma membrane. The functional acetylcholine-gated ion channel formed with mutant alpha subunits, but not mutant beta subunits, could not be blocked by alpha-BuTX. Thus, a disulfide bond between Cys128 and Cys142 of the AChR alpha or beta subunits is not needed for acetylcholine-binding. However, this disulfide bond on the alpha subunit is necessary for formation of the alpha-BuTX-binding site. These results also suggest that the most significant effect caused by disrupting the conserved disulfide loop structure is intracellular retention of most of the assembled AChR complexes.  相似文献   

20.
The extracellular domain of the p55 TNF receptor (TNFrED) is an important therapeutic protein for targeting tumor necrosis factor-alpha (TNF-alpha). The expression level of the TNFrED is low for bioproduction, which is presumably associated with the complication of pairing 24 cysteine residues to form correct disulfide bonds. Here we report the application of the yeast display method to study expression of TNFrED, a multimeric receptor. Randomly mutated libraries of TNFrED were screened, and two mutants were identified that express several-fold higher protein levels compared with the wild type while still retaining normal binding affinity for TNF-alpha. The substituted residues responsible for the higher protein expression in both mutants were identified as proline, and both proline residues are adjacent to cysteine residues involved in disulfide bonds. Analysis of the mutant residues revealed that the improved level of expression is due to conformational restriction of the substituted residues to that of the folded state seen in the crystal structures of TNFrED thereby forcing the neighboring cysteine residues into the correct orientation for proper disulfide bond formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号