首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The directional selectivity of retinal ganglion cell responses represents a primitive pattern recognition that operates within a retinal neural circuit. The cellular origin and mechanism of directional selectivity were investigated by selectively eliminating retinal starburst amacrine cells, using immunotoxin-mediated cell targeting techniques. Starburst cell ablation in the adult retina abolished not only directional selectivity of ganglion cell responses but also an optokinetic eye reflex derived by stimulus movement. Starburst cells therefore serve as the key element that discriminates the direction of stimulus movement through integrative synaptic transmission and play a pivotal role in information processing that stabilizes image motion.  相似文献   

2.
Neural information is processed based on integrated activities of relevant neurons. Concerted population activity is one of the important ways for retinal ganglion cells to efficiently organize and process visual information. In the present study, the spike activities of bullfrog retinal ganglion cells in response to three different visual patterns (checker-board, vertical gratings and horizontal gratings) were recorded using multi-electrode arrays. A measurement of subsequence distribution discrepancy (MSDD) was applied to identify the spatio-temporal patterns of retinal ganglion cells' activities in response to different stimulation patterns. The results show that the population activity patterns were different in response to different stimulation patterns, such difference in activity pattern was consistently detectable even when visual adaptation occurred during repeated experimental trials. Therefore, the stimulus pattern can be reliably discriminated according to the spatio-temporal pattern of the neuronal activities calculated using the MSDD algorithm.  相似文献   

3.
Olveczky BP  Baccus SA  Meister M 《Neuron》2007,56(4):689-700
Due to fixational eye movements, the image on the retina is always in motion, even when one views a stationary scene. When an object moves within the scene, the corresponding patch of retina experiences a different motion trajectory than the surrounding region. Certain retinal ganglion cells respond selectively to this condition, when the motion in the cell's receptive field center is different from that in the surround. Here we show that this response is strongest at the very onset of differential motion, followed by gradual adaptation with a time course of several seconds. Different subregions of a ganglion cell's receptive field can adapt independently. The circuitry responsible for differential motion adaptation lies in the inner retina. Several candidate mechanisms were tested, and the adaptation most likely results from synaptic depression at the synapse from bipolar to ganglion cell. Similar circuit mechanisms may act more generally to emphasize novel features of a visual stimulus.  相似文献   

4.
Bölinger D  Gollisch T 《Neuron》2012,73(2):333-346
Neurons often integrate information from multiple parallel signaling streams. How a neuron combines these inputs largely determines its computational role in signal processing. Experimental assessment of neuronal signal integration, however, is often confounded by cell-intrinsic nonlinear processes that arise after signal integration has taken place. To overcome this problem and determine how ganglion cells in the salamander retina integrate visual contrast over space, we used automated online analysis of recorded spike trains and closed-loop control of the visual stimuli to identify different stimulus patterns that give the same neuronal response. These iso-response stimuli revealed a threshold-quadratic transformation as a fundamental nonlinearity within the receptive field center. Moreover, for a subset of ganglion cells, the method revealed an additional dynamic nonlinearity that renders these cells particularly sensitive to spatially homogeneous stimuli. This function is shown to arise from a local inhibition-mediated dynamic gain control mechanism.  相似文献   

5.
Retinal ganglion cells receive inputs from multiple bipolar cells which must be integrated before a decision to fire is made. Theoretical studies have provided clues about how this integration is accomplished but have not directly determined the rules regulating summation of closely timed inputs along single or multiple dendrites. Here we have examined dendritic summation of multiple inputs along On ganglion cell dendrites in whole mount rat retina. We activated inputs at targeted locations by uncaging glutamate sequentially to generate apparent motion along On ganglion cell dendrites in whole mount retina. Summation was directional and dependent13 on input sequence. Input moving away from the soma (centrifugal) resulted in supralinear summation, while activation sequences moving toward the soma (centripetal) were linear. Enhanced summation for centrifugal activation was robust as it was also observed in cultured retinal ganglion cells. This directional summation was dependent on hyperpolarization activated cyclic nucleotide-gated (HCN) channels as blockade with ZD7288 eliminated directionality. A computational model confirms that activation of HCN channels can override a preference for centripetal summation expected from cell anatomy. This type of direction selectivity could play a role in coding movement similar to the axial selectivity seen in locust ganglion cells which detect looming stimuli. More generally, these results suggest that non-directional retinal ganglion cells can discriminate between input sequences independent of the retina network.  相似文献   

6.
Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch of salamander and guinea pig retinas while displaying a bar moving diffusively. We show that the bar’s position can be reconstructed from retinal activity with a precision in the hyperacuity regime using a linear decoder acting on 100+ cells. We then took advantage of this unprecedented precision to explore the spatial structure of the retina’s population code. The classical view would have suggested that the firing rates of the cells form a moving hill of activity tracking the bar’s position. Instead, we found that most ganglion cells in the salamander fired sparsely and idiosyncratically, so that their neural image did not track the bar. Furthermore, ganglion cell activity spanned an area much larger than predicted by their receptive fields, with cells coding for motion far in their surround. As a result, population redundancy was high, and we could find multiple, disjoint subsets of neurons that encoded the trajectory with high precision. This organization allows for diverse collections of ganglion cells to represent high-accuracy motion information in a form easily read out by downstream neural circuits.  相似文献   

7.
Humans can distinguish visual stimuli that differ by features the size of only a few photoreceptors. This is possible despite the incessant image motion due to fixational eye movements, which can be many times larger than the features to be distinguished. To perform well, the brain must identify the retinal firing patterns induced by the stimulus while discounting similar patterns caused by spontaneous retinal activity. This is a challenge since the trajectory of the eye movements, and consequently, the stimulus position, are unknown. We derive a decision rule for using retinal spike trains to discriminate between two stimuli, given that their retinal image moves with an unknown random walk trajectory. This algorithm dynamically estimates the probability of the stimulus at different retinal locations, and uses this to modulate the influence of retinal spikes acquired later. Applied to a simple orientation-discrimination task, the algorithm performance is consistent with human acuity, whereas naive strategies that neglect eye movements perform much worse. We then show how a simple, biologically plausible neural network could implement this algorithm using a local, activity-dependent gain and lateral interactions approximately matched to the statistics of eye movements. Finally, we discuss evidence that such a network could be operating in the primary visual cortex.  相似文献   

8.
Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME) model—a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population.  相似文献   

9.
J B Demb  K Zaghloul  P Sterling 《Neuron》2001,32(4):711-721
We perceive motion when presented with spatiotemporal changes in contrast (second-order cue). This requires linear signals to be rectified and then summed in temporal order to compute direction. Although both operations have been attributed to cortex, rectification might occur in retina, prior to the ganglion cell. Here we show that the Y ganglion cell does indeed respond to spatiotemporal contrast modulations of a second-order motion stimulus. Responses in an OFF ganglion cell are caused by an EPSP/IPSP sequence evoked from within the dendritic field; in ON cells inhibition is indirect. Inhibitory effects, which are blocked by tetrodotoxin, clamp the response near resting potential thus preventing saturation. Apparently the computation for second-order motion can be initiated by Y cells and completed by cortical cells that sum outputs of multiple Y cells in a directionally selective manner.  相似文献   

10.
Previous studies have indicated that saccadic eye movements correlate positively with perceptual alternations in binocular rivalry, presumably because the foveal image changes resulting from saccades, rather than the eye movement themselves, cause switches in awareness. Recently, however, we found evidence that retinal image shifts elicit so-called onset rivalry and not percept switches as such. These findings raise the interesting question whether onset rivalry may account for correlations between saccades and percept switches.We therefore studied binocular rivalry when subjects made eye movements across a visual stimulus and compared it with the rivalry in a ‘replay’ condition in which subjects maintained fixation while the same retinal displacements were reproduced by stimulus displacements on the screen. We used dichoptic random-dot motion stimuli viewed through a stereoscope, and measured eye and eyelid movements with scleral search-coils.Positive correlations between retinal image shifts and perceptual switches were observed for both saccades and stimulus jumps, but only for switches towards the subjects'' preferred eye at stimulus onset. A similar asymmetry was observed for blink-induced stimulus interruptions. Moreover, for saccades, amplitude appeared crucial as the positive correlation persisted for small stimulus jumps, but not for small saccades (amplitudes < 1°). These findings corroborate our tenet that saccades elicit a form of onset rivalry, and that rivalry is modulated by extra-retinal eye movement signals.  相似文献   

11.
In glaucoma, the density of retinal ganglion cells is reduced. It is largely unknown how this influences retinal information processing. An increase in spatial summation and a decrease in contrast gain control and contrast adaptation have been reported. A decrease in lateral inhibition might also arise. This could result in a larger than expected response to some stimuli, which could mask ganglion cell loss on functional testing (structure-function discrepancy). The aim of this study was to compare lateral inhibition between glaucoma patients and healthy subjects; we used a case-control design. Cases (n = 18) were selected to have advanced visual field loss in combination with a normal visual acuity. Controls (n = 50) were not allowed to have symptoms or signs of any eye disease. Lateral inhibition was measured psychophysically on a computer screen, with (1) a modified illusory movement experiment and (2) a contrast sensitivity (CS) test. Illusory movement was quantified by nulling it with a real movement; measure of lateral inhibition was the amount of illusory movement. CS was measured at 1 and 4 cycles per degree (cpd); measure of lateral inhibition was the difference between log CS at 4 and 1 cpd. Both measures were compared between cases and controls; analyses were adjusted for age and gender. There was no difference between cases and controls for these two measures of lateral inhibition (p = 0.58 for illusory movement; p = 0.20 for CS). The movement threshold was higher in cases than in controls (p = 0.008) and log CS was lower, at both 1 (-0.20; p = 0.008) and 4 (-0.28; p = 0.001) cpd. Our results indicate that spatially antagonistic mechanisms are not specifically affected in glaucoma, at least not in the intact center of a severely damaged visual field. This suggests that the structure-function discrepancy in glaucoma is not related to a decrease in lateral inhibition.  相似文献   

12.
We have explored the manner in which the population of retinal ganglion cells collectively represent the visual world. Ganglion cells in the salamander were recorded simultaneously with a multielectrode array during stimulation with both artificial and natural visual stimuli, and the mutual information that single cells and pairs of cells conveyed about the stimulus was estimated. We found significant redundancy between cells spaced as far as 500 mum apart. When we used standard methods for defining functional types, only ON-type and OFF-type cells emerged as truly independent information channels. Although the average redundancy between nearby cell pairs was moderate, each ganglion cell shared information with many neighbors, so that visual information was represented approximately 10-fold within the ganglion cell population. This high degree of retinal redundancy suggests that design principles beyond coding efficiency may be important at the population level.  相似文献   

13.
Schwartz G  Taylor S  Fisher C  Harris R  Berry MJ 《Neuron》2007,55(6):958-969
We show that when a moving object suddenly reverses direction, there is a brief, synchronous burst of firing within a population of retinal ganglion cells. This burst can be driven by either the leading or trailing edge of the object. The latency is constant for movement at different speeds, objects of different size, and bright versus dark contrasts. The same ganglion cells that signal a motion reversal also respond to smooth motion. We show that the brain can build a pure reversal detector using only a linear filter that reads out synchrony from a group of ganglion cells. These results indicate that not only can the retina anticipate the location of a smoothly moving object, but that it can also signal violations in its own prediction. We show that the reversal response cannot be explained by models of the classical receptive field and suggest that nonlinear receptive field subunits may be responsible.  相似文献   

14.
Kinetic occlusion produces discontinuities in the optic flow field, whose perception requires the detection of an unexpected onset or offset of otherwise predictably moving or stationary contrast patches. Many cells in primate visual cortex are directionally selective for moving contrasts, and recent reports suggest that this selectivity arises through the inhibition of contrast signals moving in the cells’ null direction, as in the rabbit retina. This nulling inhibition circuit (Barlow-Levick) is here extended to also detect motion onsets and offsets. The selectivity of extended circuit units, measured as a peak evidence accumulation response to motion onset/offset compared to the peak response to constant motion, is analyzed as a function of stimulus speed. Model onset cells are quiet during constant motion, but model offset cells activate during constant motion at slow speeds. Consequently, model offset cell speed tuning is biased towards higher speeds than onset cell tuning, similarly to the speed tuning of cells in the middle temporal area when exposed to speed ramps. Given a population of neurons with different preferred speeds, this asymmetry addresses a behavioral paradox—why human subjects in a simple reaction time task respond more slowly to motion offsets than onsets for low speeds, even though monkey neuron firing rates react more quickly to the offset of a preferred stimulus than to its onset.  相似文献   

15.
16.
Redundancies and correlations in the responses of sensory neurons may seem to waste neural resources, but they can also carry cues about structured stimuli and may help the brain to correct for response errors. To investigate the effect of stimulus structure on redundancy in retina, we measured simultaneous responses from populations of retinal ganglion cells presented with natural and artificial stimuli that varied greatly in correlation structure; these stimuli and recordings are publicly available online. Responding to spatio-temporally structured stimuli such as natural movies, pairs of ganglion cells were modestly more correlated than in response to white noise checkerboards, but they were much less correlated than predicted by a non-adapting functional model of retinal response. Meanwhile, responding to stimuli with purely spatial correlations, pairs of ganglion cells showed increased correlations consistent with a static, non-adapting receptive field and nonlinearity. We found that in response to spatio-temporally correlated stimuli, ganglion cells had faster temporal kernels and tended to have stronger surrounds. These properties of individual cells, along with gain changes that opposed changes in effective contrast at the ganglion cell input, largely explained the pattern of pairwise correlations across stimuli where receptive field measurements were possible.  相似文献   

17.
Computational and behavioral studies suggest that visual motion discrimination is based on quadratic nonlinearities. This raises the question of whether the behavior of motion sensitive neurons early in the visual system is actually quadratic. Theoretical studies show that mechanisms proposed for retinal directional selectivity do not behave quadratically at high stimulus contrast. However, for low contrast stimuli, models for these mechanisms may be grouped into three categories: purely quadratic, quadratic accompanied by a rectification, and models mediated by a high level threshold. We discriminated between these alternatives by analyzing the extracellular responses of ON-OFF directionally selective ganglion cells of the rabbit retina to drifting periodic gratings. The data show that purely-quadratic or high-threshold systems do not account for the behavior of these cells. However, their behavior is consistent with a rectified-quadratic model.  相似文献   

18.
The avian retino-tecto-rotundal pathway plays a central role in motion analysis and features complex connectivity. Yet, the relation between the pathway’s structural arrangement and motion computation has remained elusive. For an important type of tectal wide-field neuron, the stratum griseum centrale type I (SGC-I) neuron, we quantified its structure and found a spatially sparse but extensive sampling of the retinal projection. A computational investigation revealed that these structural properties enhance the neuron’s sensitivity to change, a behaviorally important stimulus attribute, while preserving information about the stimulus location in the SGC-I population activity. Furthermore, the SGC-I neurons project with an interdigitating topography to the nucleus rotundus, where the direction of motion is computed. We showed that, for accurate direction-of-motion estimation, the interdigitating projection of tectal wide-field neurons requires a two-stage rotundal algorithm, where the second rotundal stage estimates the direction of motion from the change in the relative stimulus position represented in the first stage  相似文献   

19.

Background

Visual stimuli elicit action potentials in tens of different retinal ganglion cells. Each ganglion cell type responds with a different latency to a given stimulus, thus transforming the high-dimensional input into a temporal neural code. The timing of the first spikes between different retinal projection neurons cells may further change along axonal transmission. The purpose of this study is to investigate if intraretinal conduction velocity leads to a synchronization or dispersion of the population signal leaving the eye.

Methodology/Principal Findings

We ‘imaged’ the initiation and transmission of light-evoked action potentials along individual axons in the rabbit retina at micron-scale resolution using a high-density multi-transistor array. We measured unimodal conduction velocity distributions (1.3±0.3 m/sec, mean ± SD) for axonal populations at all retinal eccentricities with the exception of the central part that contains myelinated axons. The velocity variance within each piece of retina is caused by ganglion cell types that show narrower and slightly different average velocity tuning. Ganglion cells of the same type respond with similar latency to spatially homogenous stimuli and conduct with similar velocity. For ganglion cells of different type intraretinal conduction velocity and response latency to flashed stimuli are negatively correlated, indicating that differences in first spike timing increase (up to 10 msec). Similarly, the analysis of pair-wise correlated activity in response to white-noise stimuli reveals that conduction velocity and response latency are negatively correlated.

Conclusion/Significance

Intraretinal conduction does not change the relative spike timing between ganglion cells of the same type but increases spike timing differences among ganglion cells of different type. The fastest retinal ganglion cells therefore act as indicators of new stimuli for postsynaptic neurons. The intraretinal dispersion of the population activity will not be compensated by variability in extraretinal conduction times, estimated from data in the literature.  相似文献   

20.
Ganglion cells are the output retinal neurons that convey visual information to the brain. There are ~20 different types of ganglion cells, each encoding a specific aspect of the visual scene as spatial and temporal contrast, orientation, direction of movement, presence of looming stimuli; etc. Ganglion cell functioning depends on the intrinsic properties of ganglion cell’s membrane as well as on the excitatory and inhibitory inputs that these cells receive from other retinal neurons. GABA is one of the most abundant inhibitory neurotransmitters in the retina. How it modulates the activity of different types of ganglion cells and what is its significance in extracting the basic features from visual scene are questions with fundamental importance in visual neuroscience. The present review summarizes current data concerning the types of membrane receptors that mediate GABA action in proximal retina; the effects of GABA and its antagonists on the ganglion cell light-evoked postsynaptic potentials and spike discharges; the action of GABAergic agents on centre-surround organization of the receptive fields and feature related ganglion cell activity. Special emphasis is put on the GABA action regarding the ON–OFF and sustained–transient ganglion cell dichotomy in both nonmammalian and mammalian retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号