首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have synthesised an homologous series of n-bromoalkylphenanthridinium bromides and studied their DNA-binding and antitumour properties. Each of these compounds has the capacity both to intercalate and alkylate DNA. Dialysis measurements reveal a relatively high affinity for calf thymus DNA, being about 10(5) M-1 at ionic strength 0.01. Incubating calf thymus DNA-ligand complexes having a ligand-to-basepair ratio of 0.4 at 37 degrees C for 18 h leads to maximum alkylation levels of about one ligand molecule bound irreversibly per 40 basepairs. The reactivity of these compounds towards DNA is chain-length dependent, the n-decyl compound, for example, requiring about 10-times the ligand-to-basepair input ratio of the n-hexyl derivative to reach the same level of alkylation. The limited degree of alkylation is a consequence of conversion of the alkylbromides to the less reactive alkylchlorides in the buffer medium. The results of DNA sequencing experiments indicate that the n-hexyl derivative alkylates at guanines occurring in 5'-GT-3' sequences and in runs of guanines [(Gp)n]. The corresponding n-decyl compound, on the other hand, is highly selective for guanines in 5'-GT-3' sequences only and also reacts weakly with some adenines. None of the phenanthridinium compounds showed significant antitumour activity in the P388 murine leukaemia test system.  相似文献   

2.
3.
Cell killing by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), N-methyl-N-nitrosourea (MNU), N-ethyl-N-nitrosourea (ENU), and methyl methanesulfonate (MMS) was measured in Chinese hamster ovary (CHO) cells using the colony-formation assay. Cell killing by these agents was determined in exponentially growing asynchronous cells, in synchronous cells as a function of cell-cycle position and in nondividing cells. Distinct differences in the cytotoxic effect of the 4 alkylating agents were found in respect to dose-response, cell cycle phase-sensitivity and growth state. MNNG and MNU showed the same biphasic dose-survival relationship in exponentially growing cells, with an initial steep decline followed by a shallow component. The shallow component disappeared in growth-arrested cells. MNNG and MNU differed, however, in the cell-cycle age response. No cell-cycle phase difference was seen with MNNG, whereas cells in G1 seemed more sensitive to MNU than cells in S phase. MMS and ENU both showed shouldered dose-response curves for exponentially growing asynchronous cells, and the same cell-cycle pattern for synchronous cultures with cells in early S phase being the most sensitive. However, survival of nondividing cells versus dividing cells was reduced much more by MMS than by ENU. Caffeine, which interferes with the regulation of DNA synthesis and is known to modify cell killing by DNA-damaging agents, enhanced cell killing by all agents. It is concluded that there must be a number of factors which contribute to cell killing by monofunctional alkylating agents, and that besides alkylation of DNA reaction with other cellular macromolecules should be considered.  相似文献   

4.
Alkylating agents, because of their ability to react directly with DNA either in vitro or in vivo, or following metabolic activation as in the case of the dialkylnitrosamines, have been used extensively in studying the mechanisms of mutagenicity and carcinogenicity. Their occurrence is widespread in the environment and human exposure from natural and pollutant sources is universal. Since most of these chemicals show varying degrees of both carcinogenicity and mutagenicity, and exhibit compound-specific binding patterns, they provide an excellent model for studying molecular dosimetry. Molecular dosimetry defines dose as the number of adducts bound per macromolecule and relates the binding of these adducts to the human mutagenic or carcinogenic response. This review complies DNA alkylation data for both methylating and ethylating agents in a variety of systems and discusses the role these alkylation products plays in molecular mutagenesis.  相似文献   

5.
6.
7.
Novel 9-fluoren-beta-O-glycosides, designed as DNA-intercalating agents in structural correlation with antiviral tilorone and anticancer anthracyclines, have been prepared with yields in beta-anomers ranging between 25 and 63%. They have been screened for antiproliferative, immunostimulating and antiviral properties against HSV-1 and HSV-2 viruses. Compounds displaying significant antiviral activity against HSV-2 are acetylated 1 and deprotected 6 9-fluorenyl-O-d-arabinopyranoses, whereas 9-fluorenyl-O-d-glucopyranose 3 is the most effective on HSV-1 replication, followed by 1 and 6. The conformational properties of these compounds have been evaluated by molecular modelling techniques.  相似文献   

8.
9.
The induction of sister-chromatid exchanges (SCEs) and cytotoxicity in 9L cells treated with monofunctional and bifunctional alkylating agents has been investigated. Three classes of monofunctional and bifunctional agents were studied: nitrosoureas, mustards and epoxides. Independent of class the bifunctional agents were 55–630-fold more effective at inducing SCEs and 300–2400-fold more effective at inducing cellular cytotoxicity than the corresponding monofunctional agents. Comparing the induction of SCEs and cytotoxicity by these agents showed that these two cellular responses to DNA damage are highly correlated. The extent of DNA alkylation in cells treated with 1-ethyl-1-nitrosourea (ENU) or 1-(2-chloro-ethyl)-1-nitrosourea (CNU) was similar indicating that the increased effectiveness of CNU to induce SCEs and cytotoxicity was not due to increased DNA alkylation. Molecular dosimetry calculations indicate that for CNU and ENU treatment of 9L cells there are 116 and 8500 alkylations per SCE induced and 2.6 × 104 and 4.6 × 106 alkylations at the dose required to reduce survival of 9L cells by 90%. Comparison of the DNA alkylation products produced by CNU and ENU treatment of 9L cells suggests that the formation of the intrastrand crosslink N7-bis(guanyl)ethane the interstrand crosslink 1-(3-deoxycytidyl)-2-(1-deoxyguanosinyl)ethane by CNU is responsible for the increased effectiveness of CNU treatment at both induction of SCEs and cytotoxicity.  相似文献   

10.
Two series of difunctional DNA-intercalating agents (diacridines and diquinolines) were tested for mutagenic properties in Salmonella typhimurium strain TA1537, and for 'petite' mutagenesis activity in Saccharomyces cerevisiae, and also compared in terms of their structural, lipophilic and DNA-binding properties. Diacridines with only a short chain length were monointercalators, while those with an alkyl linker chain longer than C6 were bisintercalators. Although the bisintercalators especially bound very tightly to DNA, none of these compounds was as effective a frameshift mutagen in TA1537 as the parent chromophore 9-aminoacridine. However, the two (monointercalating) diacridines of shortest chain length were still able to cause frameshifts, and this ability returned (albeit weakly) in the bisintercalators of longest chain length. Although 9-aminoacridine showed no ability for 'petite' mutagenesis, the diacridines of longer chain length were very effective in causing this mitochondrial event. In the quinoline series, both the parent chromophore (4-aminoquinoline) and all the diquinolines were weak monointercalators. None of these compounds showed any ability for frameshift mutagenesis, although some were very weak mitochondrial mutagens. It is concluded that linking two acridines produces compounds whose mutagenic properties might have been predicted from our current knowledge of the parent molecules. However, despite a similar ability to intercalate DNA, the diquinolines show no resemblance to acridines in their mutagenic properties.  相似文献   

11.
Eight monofunctional alkylating agents were examined for their ability to induce mutation in Salmonella typhimurium. The assay was carried out in S. typhimurium TA100 with the preincubation method. The SN1-type agents were more mutagenic than the SN2-type ones; besides, methylating agents exerted more mutagenic activity than ethylating ones. Those responses in the reversion assay were quite similar to the results obtained previously with the beta-galactosidase assay in Escherichia coli CSH26/pMCP1000 (alkA'-lacZ') as to the induction of the adaptive response. A good correlation was found between mutagenic potency in the reverse mutation assay and inducing potency in the beta-galactosidase assay.  相似文献   

12.
13.
A quantitative correlation between carcinogenicity and genotoxicity was investigated by a comparison between the carcinogenic potency in rodents and the mutagenic (M), recombinogenic (R) and SOS-inducing (I) potencies in a bacterial test (E. coli multitest) for 9 monofunctional alkylating agents: N-nitroso-N-methylurethane, N-nitroso-N-ethylurea, epichlorohydrin, N-nitroso-N-methylurea, N-nitroso-N-methyl-N'-nitroguanidine, methyl methanesulfonate, diethylsulfate, dimethylsulfate, ethyl methanesulfonate. A significant positive correlation between the carcinogenic potency and the product of the mutagenic and recombinogenic potencies was found for all tested compounds. Thus, the E. coli multitest may be used as a simple test to search for correlations between carcinogenicity and genotoxicity of DNA-damaging agents.  相似文献   

14.
Summary The lethal and mutagenic effects of methyl methanesulphonate (MMS), ethyl methanesulphonate (EMS), and N-methyl-N-nitro-N-nitrosoguanidine (MNNG) can be dissociated in a mitomycin C (MTC)-sensitive mutant, strain 302, of Micrococcus radiodurans.As regards lethality 302 is extremely sensitive, compared with the wild type, to MTC and decarbamoyl MTC (DCMTC), slightly sensitive to EMS, MNNG, nitrous acid, 7-bromomethylbenz {} anthracene (BrMBA), and N-acetoxy-N-2-acetylaminofluorene (AAAF), and resistant to MMS, hydroxylamine, and ICR 191G. As regards mutability it is, compared to the wild type, very sensitive to MMS, EMS, and MNNG, and slightly sensitive to hydroxylamine and nitrous acid but not to any other agent examined.Alkaline sucrose gradient studies indicate that 302 does not incise DNA containing BrMBA adducts, although it does incise DNA damaged by AAAF but probably not to the same extent as wild type.We put forward the hypothesis that the hypermutability of 302 is due to the non-removal of bases or nucleotides, modified in exocyclic positions, which have altered base-pairing capabilities, while lethality results from the non-removal of bases or nucleotides, also modified in exocyclic positions, which no longer form hydrogen-bonded base pairs.  相似文献   

15.
AIMS: The demonstration of the antibiofilm effects of pharmaceutical microemulsions. METHODS AND RESULTS: Microemulsions were prepared as physically stable oil/water systems. Previous work by this group has shown that microemulsions are highly effective antimembrane agents that result in rapid losses of viability in planktonic populations of Pseudomonas aeruginosa and Staphylococcus aureus. In this experiment a microemulsion preparation was used upon established biofilm cultures of Ps. aeruginosa PA01 for a period of 4 h. The planktonic MIC of sodium pyrithione and the planktonic and biofilm MICs of cetrimide were used as positive controls and a biofilm was exposed to a volume of normal sterile saline as a treatment (negative) control. Results indicate three log-cycle reductions in viability within the microemulsion treated biofilm, as compared to those observed in control treatments of similar biofilms (one log-cycle reduction in viabilities). CONCLUSIONS: The results indicate that the microemulsions are highly effective antibiofilm agents. SIGNIFICANCE AND IMPACT OF THE STUDY: This study suggests that microemulsions may have a role in the treatment of industrial and environmental biofilms.  相似文献   

16.
17.
Summary The radiation-sensitive rad mutants of the yeast Saccharomyces cerevisiae exhibit a complex pattern of sensitivity to simple monofunctional alkylating agents. The RAD1, RAD2, RAD4 and RAD14 genes of the RAD3 epistasis group are implicated in the repair of ethylations to DNA. The RAD3, RAD10 and RAD16 genes of this group are not involved. The RAD4 and RAD14 genes have a particular role in repair following exposure to those ethylating agents that preferentially alkylate oxygen, but not to those that preferentially ethylate nitrogen. The RAD1 and RAD2 genes are involved in the repair of damage induced by all the ethylating agents used except EMS. The mutants in this group that are sensitive to ENU were not sensitive to MNU, suggesting that nucleotide excision operates on ethylations but not on methylations.In the RAD6 group, the RAD6 and RAD18 genes are involved in DNA repair after exposure to all the alkylating agents tested, whereas RAD8 appears to have a role in the repair of O-alkylations but not N-alkylations. RAD9 operates in the repair of methylations and ethylations, but does not influence events after exposure to EMS. In the RAD52 group, the mutants tested were sensitive to ENU and DES. Thus some members of all three epistasis groups are involved in the repair of alkylations to DNA.Abbreviations DES diethylsulphate - EMS ethylmethanesulphonate - ENNG N-ethyl-N-nitro-N-nitrosoguanidine - ENU N-ethylnitrosourea - MNU N-methylnitrosourea - DMSO dimethylsulphoxide - MMS methylmethanesulphonate  相似文献   

18.
A Abu-Daya  P M Brown    K R Fox 《Nucleic acids research》1995,23(17):3385-3392
We have examined the interaction of distamycin, netropsin, Hoechst 33258 and berenil, which are AT-selective minor groove-binding ligands, with synthetic DNA fragments containing different arrangements of AT base pairs by DNase I footprinting. For fragments which contain multiple blocks of (A/T)4 quantitative DNase I footprinting reveals that AATT and AAAA are much better binding sites than TTAA and TATA. Hoechst 33258 shows that greatest discrimination between these sites with a 50-fold difference in affinity between AATT and TATA. Alone amongst these ligands, Hoechst 33258 binds to AATT better than AAAA. These differences in binding to the various AT-tracts are interpreted in terms of variations in DNA minor groove width and suggest that TpA steps within an AT-tract decrease the affinity of these ligands. The behaviour of each site also depends on the flanking sequences; adjacent pyrimidine-purine steps cause a decrease in affinity. The precise ranking order for the various binding sites is not the same for each ligand.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号