首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We investigated membrane currents activated by intracellular divalent cations in two types of molluscan pacemaker neurons. A fast and quantitative pressure injection technique was used to apply Ca2+ and other divalent cations. Ca2+ was most effective in activating a nonspecific cation current and two types of K+ currents found in these cells. One type of outward current was quickly activated following injections with increasing effectiveness for divalent cations of ionic radii that were closer to the radius of Ca2+ (Ca2+ greater than Cd2+ greater than Hg2+ greater than Mn2+ greater than Zn2+ greater than Co2+ greater than Ni2+ greater than Pb2+ greater than Sr2+ greater than Mg2+ greater than Ba2+). The other type of outward current was activated with a delay by Ca2+ greater than Sr2+ greater than Hg2+ greater than Pb2+. Mg2+, Ba2+, Zn2+, Cd2+, Mn2+, Co2+, and Ni2+ were ineffective in concentrations up to 5 mM. Comparison with properties of Ca2(+)-sensitive proteins related to the binding of divalent cations suggests that a Ca2(+)-binding protein of the calmodulin/troponin C type is involved in Ca2(+)-dependent activation of the fast-activated type of K+ current. Th sequence obtained for the slowly activated type is compatible with the effectiveness of different divalent cations in activating protein kinase C. The nonspecific cation current was activated by Ca2+ greater than Hg2+ greater than Ba2+ greater than Pb2+ greater than Sr2+, a sequence unlike sequences for known Ca2(+)-binding proteins.  相似文献   

2.
Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(-7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites.  相似文献   

3.
The conduction properties of the alkaline earth divalent cations were determined in the purified sheep cardiac sarcoplasmic reticulum ryanodine receptor channel after reconstitution into planar phospholipid bilayers. Under bi-ionic conditions there was little difference in permeability among Ba2+, Ca2+, Sr2+, and Mg2+. However, there was a significant difference between the divalent cations and K+, with the divalent cations between 5.8- and 6.7-fold more permeant. Single-channel conductances were determined under symmetrical ionic conditions with 210 mM Ba2+ and Sr2+ and from the single-channel current-voltage relationship under bi-ionic conditions with 210 mM divalent cations and 210 mM K+. Single-channel conductance ranged from 202 pS for Ba2+ to 89 pS for Mg2+ and fell in the sequence Ba2+ greater than Sr2+ greater than Ca2+ greater than Mg2+. Near-maximal single-channel conductance is observed at concentrations as low as 2 mM Ba2+. Single-channel conductance and current measurements in mixtures of Ba(2+)-Mg2+ and Ba(2+)-Ca2+ reveal no anomalous behavior as the mole fraction of the ions is varied. The Ca(2+)-K+ reversal potential determined under bi-ionic conditions was independent of the absolute value of the ion concentrations. The data are compatible with the ryanodine receptor channel acting as a high conductance channel displaying moderate discrimination between divalent and monovalent cations. The channel behaves as though ion translocation occurs in single file with at most one ion able to occupy the conduction pathway at a time.  相似文献   

4.
Fusogenic capacities of divalent cations and effect of liposome size   总被引:3,自引:0,他引:3  
J Bentz  N Düzgüne? 《Biochemistry》1985,24(20):5436-5443
The initial kinetics of divalent cation (Ca2+, Ba2+, Sr2+) induced fusion of phosphatidylserine (PS) liposomes, LUV, is examined to obtain the fusion rate constant, f11, for two apposed liposomes as a function of bound divalent cation. The aggregation of dimers is rendered very rapid by having Mg2+ in the electrolyte, so that their subsequent fusion is rate limiting to the overall reaction. In this way the fusion kinetics are observed directly. The bound Mg2+, which by itself is unable to induce the PS LUV to fuse, is shown to affect only the aggregation kinetics when the other divalent cations are present. There is a threshold amount of bound divalent cation below which the fusion rate constant f11 is small and above which it rapidly increases with bound divalent cation. These threshold amounts increase in the sequence Ca2+ less than Ba2+ less than Sr2+, which is the same as found previously for sonicated PS liposomes, SUV. While Mg2+ cannot induce fusion of the LUV and much more bound Sr2+ is required to reach the fusion threshold, for Ca2+ and Ba2+ the threshold is the same for PS SUV and LUV. The fusion rate constant for PS liposomes clearly depends upon the amount and identity of bound divalent cation and the size of the liposomes. However, for Ca2+ and Ba2+, this size dependence manifests itself only in the rate of increase of f11 with bound divalent cation, rather than in any greater intrinsic instability of the PS SUV. The destabilization of PS LUV by Mn2+ and Ni2+ is shown to be qualitatively distinct from that induced by the alkaline earth metals.  相似文献   

5.
The R-form lipopolysaccharide (LPS) from Klebsiella strain LEN-111 (O3-:K1-) forms a hexagonal lattice structure with a lattice constant of 14 to 15 nm when it is precipitated by addition of two volumes of 10 mM MgCl2-ethanol. When the LPS was suspended in various buffers (50 mM) at pH 2 to 12 for 24 hr at 4 C, at pH 2 and 3 pits of the hexagonal lattice structure markedly disappeared, at pH 4 to 8.5 the lattice structure was stable, and at pH 9 to 12 it tended to loosen somewhat. The LPS from which cations were removed by electrodialysis retained the ability of hexagonal assembly, although the lattice constant of the hexagonal lattice of the electrodialyzed LPS was large. The lattice structure of the electrodialyzed LPS was much more labile than that of the non-electrodialyzed LPS at alkaline pH levels and the former was completely disintegrated into ribbon-like structures when the LPS was suspended in 50 mM Tris buffer at pH 7.7 or higher. However, the electrodialyzed LPS formed a hexagonal lattice structure in Tris buffer at pH 8.5 containing 0.1 to 100 mM MgCl2. The lattice constants of the hexagonal lattice formed by the electrodialyzed LPS at 10 or 100 mM MgCl2 were very similar to that of the lattice of the non-electrodialyzed LPS. From these results it is concluded that the lability of the hexagonal lattice structure of the electrodialyzed LPS at alkaline conditions is due to removal of Mg2+ by electrodialysis.  相似文献   

6.
The R-form lipopolysaccharide (LPS) from Escherichia coli K-12, from which cationic material had been removed by electrodialysis and the pH of which had fallen to 3.6, formed a rough hexagonal lattice structure with the lattice constant of about 19 nm. The rough hexagonal structure was maintained in buffers at pH 5 or lower but disintegrated into the ribbon-like structures in buffers at pH 6 or higher. However, in the presence of 10 mM Mg2+, the hexagonal lattice structure was not disintegrated even at alkaline pH levels but conversely it became more dense. At pH 8.3 to 8.9, the hexagonal lattice structure with the shortest lattice constant (15 nm) was formed. The same optimal pH levels were obtained for formation of the dense hexagonal lattice structure (lattice constant, 14 to 15 nm) by the electrodialyzed LPS from Klebsiella pneumoniae strain LEN-111 (O3-:K1-). The ability of Mg2+ to induce formation of the dense hexagonal lattice structure of the K-12 LPS depends upon the presence of buffers showing the optimal pH levels, since a very high concentration of Mg2+ such as 500 mM was required for the lattice formation in distilled water. The amount of the magnesium bound to the K-12 LPS did not significantly differ throughout the pH range of 3 to 9. Therefore, the optimal pH range is another essential factor for formation of the dense hexagonal lattice structure of the LPS in addition to binding of the magnesium to the LPS.  相似文献   

7.
The adhesion and internalization of Chlamydia trachomatis by HeLa cells was unaffected by removal of K+, Mg2+, or glucose from the incubation medium, slightly reduced by removal of Na+, and significantly reduced by omission of Ca2+, Sr2+, Mg2+, and Mn2+ could replace Ca2+ in the adhesion but only Sr2+ supported internalization, and La3+, Co2+, Fe3+, Ba2+, and Zn2+ all reduced internalization more than adhesion. During initial infection there was no measurable difference in the uptake or release of 45Ca2+ or 86Rb+ between infected and noninfected HeLa monolayers. Infection was not prevented by pretreatment of the monolayers with the calcium channel blockers, verapamil, D600, and nitrendipine, or the calmodulin inhibitors, TMB-8 or trifluperazine. The results suggest that divalent cations are not essential for chlamydial infection but that the process of internalization is facilitated by the presence of cations, particularly Na+ and Ca2+.  相似文献   

8.
A differential effect is found of various bivalent cations (Ba2+, Ca2+, Mg2+, Cd2+, Co2+, Mn2+, Ni2+, Zn2+ and Hg2+) on stability of intermolecular Py-Pu-Pu triplex with different sequence of base triads. Ca2+, Mg2+, Cd2+, Co2+, Mn2+, Ni2+ and Zn2+ do stabilize the d(C)n d(G)n d(G)n triplex whereas Ba2+ and Hg2+ do not. Ba2+, Ca2+, Mg2+ and Hg2+ destabilize the d(TC)n d(GA)n d(AG)n triplex whereas Cd2+, Co2+, Mn2+, Ni2+ and Zn2+ stabilize it. The complexes we observe are rather stable because they do not dissociate during time of gel electrophoresis in the co-migration experiments. Chemical probing experiments with dimethyl sulfate as a probe indicate that an arbitrary homopurine-homopyrimidine sequence forms triplex with corresponding purine oligonucleotide in the presence of Mn2+ or Zn2+, but not Mg2+. In the complex the purine oligonucleotide has antiparallel orientation with respect to the purine strand of the duplex. Specifically, we have shown the formation of the Py-Pu-Pu triplex in a fragment of human papilloma virus HPV-16 in the presence of Mn2+.  相似文献   

9.
Ho WK  Kim I  Lee CO  Youm JB  Lee SH  Earm YE 《Biophysical journal》1999,76(4):1959-1971
We have investigated actions of various divalent cations (Ba2+, Sr2+, Mn2+, Co2+, Ni2+, Zn2+) on human ether-a-go-go related gene (HERG) channels expressed in Xenopus laevis oocytes using the voltage clamp technique. All divalent cations inhibited HERG current dose-dependently in a voltage-dependent manner. The concentration for half-maximum inhibition (Ki) decreased at more negative potentials, indicating block is facilitated by hyperpolarization. Ki at 0 mV for Zn2+, Ni2+, Co2+, Ba2+, Mn2+, and Sr2+ was 0.19, 0.36, 0. 50, 0.58, 2.36, and 6.47 mM, respectively. The effects were manifested in four ways: 1) right shift of voltage dependence of activation, 2) decrease of maximum conductance, 3) acceleration of current decay, and 4) slowing of activation. However, each parameter was not affected by each cation to the same extent. The potency for the shift of voltage dependence of activation was in the order Zn2+ > Ni2+ >/= Co2+ > Ba2+ > Mn2+ > Sr2+, whereas the potency for the decrease of maximum conductance was Zn2+ > Ba2+ > Sr2+ > Co2+ > Mn2+. The kinetics of activation and deactivation were also affected, but the two parameters are not affected to the same extent. Slowing of activation by Ba2+ was most distinct, causing a marked initial delay of current onset. From these results we concluded that HERG channels are nonselectively blocked by most divalent cations from the external side, and several different mechanism are involved in their actions. There exist at least two distinct binding sites for their action: one for the voltage-dependent effect and the other for reducing maximum conductance.  相似文献   

10.
The microbial chelating compound proferrorosamine A, produced by Pseudomonas roseus fluorescens, formed a complex with Fe2+ of which the apparent stability constant was found to be 10(23). The following order of increasing stability constants of metal complexes with proferrorosamine was established as: Ba2+, Ca2+, Mg2+, Mn2+ less than Hg2+ less than Zn2+ less than Pb2+ less than Co2+ less than Cu2+ congruent to Fe2+ less than Ni2+. Only Ni(2+)-proferrorosamine had a stability constant which was established as: Ba2+, Ca2+, Mg2+, Mn2+ less than Hg2+ less than Zn2+ less than Pb2+ less than Co2+ less than Cu2+ congruent to Fe2+ less than Ni2+. Only Ni(2+)-proferrorosamine had a stability constant which was ca 32 times higher than Fe(2+)-proferrorosamine. Because of the production of proferrorosamine the growth of Ps. roseus fluorescens was not inhibited in iron limiting media by the addition of 0.15 mmol/l of the weaker chemical Fe2+ chelator 2,2'-dipyridyl. This contrasted with the proferrorosamine-negative mutant K2 and Ps. stutzeri, which only produces Fe(3+)-chelating siderophores. Furthermore, it was found that proferrorosamine was able to dissolve Fe2+ from stainless steel. These results show that proferrorosamine is a strong and selective Fe2+ chelator which could be used as an alternative for the toxic 2,2'-dipyridyl to control lactic acid fermentations.  相似文献   

11.
The cation complexation equilibria between ionophore A23187 and several alkaline earth and first transition series divalent cations have been investigated. Absorption and fluorescence spectroscopy were used to monitor the reactions which were studied in solutions of 80% methanol/water, at 25 degrees C, and under conditions of controlled ionic strength and pH. Titration of the ionophore with divalent cations results first in formation of the dimeric species MA2 and subsequently in the formation of MA+ by disproportionation of the first product. With Zn2+, Ni2+, and Co2+ (above pH approximately 6), a third species is detected which is postulated to be MA.OH. The existence of this species with Mn2+ and alkaline earth cations is uncertain. For formation of MA2, the second stepwise stability constant is similar to or exceeds the first value with all cations studied. However, it is possible to isolate the first reaction and determine accurate stability constants by working at an ionophore concentration of 3 X 10(-8) M or less and by employing pH values which preclude interference by the mixed ionophore/hydroxide species. Under these conditions, the relationship between log KMA' and pH is linear and displays a slope of 1.0. pH-independent stability constants were calculated by using pH-dependent stability constants and the known value of the ionophore's protonation constant in this solvent. The logarithms of the values obtained ranged from 7.54 +/- 0.06 for Ni2+ to 3.60 +/- 0.06 for Ba2+. The selectivity sequence and relative affinities (in parentheses) for the species MA+ are as follows: Ni2+ (977) greater than Co2+ (331) greater than Zn2+ (174) greater than Mn2+ (34) greater than Mg2+ (1.00) approximately equal to Ca2+ (0.89) greater than Sr2+ (0.20) greater than Ba2+ (0.11). Data are discussed in comparison to other studies on the complexation properties of A23187 and in terms of their significance to interpreting the transport properties of this ionophore.  相似文献   

12.
The single-channel properties for monovalent and divalent cations of a voltage-independent cation channel from Tetrahymena cilia were studied in planar lipid bilayers. The single-channel conductance reached a maximum value as the K+ concentration was increased in symmetrical solutions of K+. The concentration dependence of the conductance was approximated to a simple saturation curve (a single-ion channel model) with an apparent Michaelis constant of 16.3 mM and a maximum conductance of 354 pS. Divalent cations (Ca2+, Ba2+, Sr2+, and Mg2+) also permeated this channel. The sequence of permeability determined by zero current potentials at high ionic concentrations was Ba2+ greater than or equal to K+ greater than or equal to Sr2+ greater than Mg2+ greater than Ca2+. Single-channel conductances for Ca2+ were nearly constant (13.9 pS-20.5 pS) in the concentrations between 0.5 mM and 50 mM Ca-gluconate. In the experiments with mixed solutions of K+ and Ca2+, a maximum conductance of Ca2+ (gamma Camax) and an apparent Michaelis constant of Ca2+ (K Cam) were obtained by assuming a simple competitive relation between the cations. Gamma Camax and K Cam were 14.0 pS and 0.160 mM, respectively. Single-channel conductances in mixed solutions were well-fitted to this competitive model supporting that this cation channel behaves as a single-ion channel. This channel had relatively high-affinity Ca2+-binding sites.  相似文献   

13.
K Kato  M Goto  H Fukuda 《Life sciences》1983,32(8):879-887
When investigating the effects of divalent cations (Mg2+, Ca2+, Sr2+, Ba2+, Mn2+ and Ni2+) on 3H-baclofen binding to rat cerebellar synaptic membranes, we found that the specific binding of 3H-baclofen was not only dependent on divalent cations, but was increased dose-dependently in the presence of these cations. The effects were in the following order of potency: Mn2+ congruent to Ni2+ greater than Mg2+ greater than Ca2+ greater than Sr2+ greater than Ba2+. Scatchard analysis of the binding data revealed a single component of the binding sites in the presence of 2.5 mM MgCl2, 2.5 mM CaCl2 or 0.3 mM MnCl2 whereas two components appeared in the presence of 2.5 mM MnCl2 or 1 mM NiCl2. In the former, divalent cations altered the apparent affinity (Kd) without affecting density of the binding sites (Bmax). In the latter, the high-affinity sites showed a higher affinity and lower density of the binding sites than did the single component of the former. As the maximal effects of four cations (Mg2+, Ca2+, Mn2+ and Ni2+) were not additive, there are probably common sites of action of these divalent cations. Among the ligands for GABAB sites, the affinity for (-), (+) and (+/-) baclofen, GABA and beta-phenyl GABA increased 2-6 fold in the presence of 2.5 mM MnCl2, in comparison with that in HEPES-buffered Krebs solution (containing 2.5 mM CaCl2 and 1.2 mM MgSO4), whereas that for muscimol was decreased to one-fifth. Thus, the affinity of GABAB sites for its ligands is probably regulated by divalent cations, through common sites of action.  相似文献   

14.
Role of the divalent metal cation in the pyruvate oxidase reaction   总被引:3,自引:0,他引:3  
Purified pyruvate oxidase requires a divalent metal cation for enzymatic activity. The function of the divalent metal cation was studied for unactivated, dodecyl sulfate-activated, and phosphatidylglycerol-activated oxidase. Assays performed in the presence of Mg2+, CA2+, Zn2+, Mn2+, Ba2+, Ni2+, Co2+, Cu2+, and Cr3+ in each of four different buffers, phosphate, 1,4-piperazinediethanesulfonic acid, imidazole, and citrate, indicate that any of these metal cations will fulfill the pyruvate oxidase requirement. Extensive steady state kinetics data were obtained with both Mg2+ and Mn2+. All the data are consistent with the proposition that the only role of the metal is to bind to the cofactor thiamin pyrophosphate (TPP) and that it is the Me2+-TPP complex which is the true cofactor. Values of the Mg2+ and Mn2+ dissociation constants with TPP were determined by EPR spectroscopy and these data were used to calculate the Michaelis constant for the Me2+-TPP complexes. The results show that the Michaelis constants for the Me2+-TPP complexes are independent of the metal cation in the complex. Fluorescence quenching experiments show that the Michaelis constant is equal to the dissociation constant of the Mn2+-TPP complex with the enzyme. It was also shown that Mn2+ will only bind to the enzyme in the presence of TPP and that one Mn2+ binds per subunit. Steady state kinetics experiments with Mn2+ were more complicated than those obtained with Mg2+ because of the formation of an abortive Mn2+-pyruvate complex. Both EPR and steady state kinetics data indicated complex formation with a dissociation constant of about 70 mM.  相似文献   

15.
The ionophoretic activity of PGBx, an oligomeric mixture synthesized from 15-dehydro PGB1, with different cations was measured using arsenazo III-entrapped liposomes. The order of ionophoretic activity was Zn2+ greater than Co2+ greater than Mn2+ greater than Cu2+ greater than Ca2+ greater than Ba2+ greater than Sr2+ greater than Mg2+. The intrinsic fluorescence of PGBx was quenched by the binding of divalent cations as well as by La3+ and H+. Quenching by K+ and Na+ was minimal. The order of quenching strength of divalent cations was Zn2+ greater than Co2+ greater than Cu2+ = Mn2+ greater than Ca2+ greater than Ba2+ greater than Sr2+ greater than Mg2+. Binding affinities of these cations determined by a murexide indicator method were in good agreement with that determined by the fluorescence quenching reaction. The cation binding affinity of PGBx in aqueous solutions correlates with the ionophoretic activity in liposomes. The binding affinity for K+ was estimated from the inhibition by K+ of Ca2+ binding by PGBx. Although PGBx has a lower selectivity for divalent cation binding than the ionophore A23187, the characteristics of the binding affinity of these two compounds for various ions were similar. The pK of PGBx as determined by fluorescence quenching was 6.7. The molecular weight of the divalent cation binding unit was estimated to be about 680, with each PGBx molecule having three such binding sites. The binding of Ca2+ to such a site is one-to-one.  相似文献   

16.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

17.
Ovulated mouse oocytes are activated by exposure to culture medium containing Sr2+ or Ba2+ or by intracytoplasmic injection of the divalent cations. It is known that in vitro matured pig oocytes are activated by the intracytoplasmic injection of Ca2+. In this study, we examined the effect of exposure and of intracytoplasmic injection of Sr2+ or Ba2+ on in vitro matured pig oocytes (MII-oocytes). When MII-oocytes were exposed to the medium containing divalent cations, no oocytes were activated. However, in the case of oocytes that were injected with Sr2+, Ba2+ and Ca2+, at 6 h after injection, 64%, 71% and 86% of the oocytes had been released from MII-arrest, and 51%, 67% and 84% formed female pronuclei, respectively. The initial transient in intracellular Ca2+ concentration ([Ca2+]i) was measured by the Ca2+ indicator dye fluo-4 dextran. Microinjection of Sr2+, Ba2+ or Ca2+ induced a rapid elevation of [Ca2+]i. The exocytosis of cortical granules was examined by staining with fluorescein isothiocyanate (FITC)-labelled peanut agglutinin. After an injection of divalent cations, a release of cortical granules was observed in the oocytes. Maturation promoting factor (MPF) activity declined to a low level after 6 h in all the oocytes injected with divalent cations. To test their developmental ability, injected oocytes were treated with cytochalasin B and then cultured for 168 h in NCSU23 medium. After 168 h, 29% (Sr2+), 29% (Ba2+) and 51% (Ca2+) of the oocytes had developed to the blastocyst stage. These results indicate that intracytoplasmic injection of Sr2+ and Ba2+, like that of Ca2+, induces in vitro matured pig oocytes to be released from MII-arrest and leads them into a series of events related to oocyte activation.  相似文献   

18.
The magnesium salt of R-form lipopolysaccharide (LPS) from Klebsiella pneumoniae strain LEN-111 (O3-:K1-) that was prepared after the removal of cationic materials by electrodialysis formed essentially the same ordered hexagonal lattice structure with a lattice constant of 14 to 15 nm as the original non-electrodialyzed preparation of the R-form LPS. When the magnesium salt was suspended in 50 mM glycine buffer or Tris buffer at pH 1.4 to 9.5 and kept at 4 C for 24 hr, its content of Mg was markedly decreased, and its hexagonal lattice structure was changed to a swollen hexagonal lattice structure with extended lattice constants at pH 1.4 and to a loose mesh-like structure at pH 3.0 or higher. In the original non-electrodialyzed preparation of the R-form LPS, the release of Mg and disintegration of the hexagonal lattice structure did not occur by suspending in buffers at pH 1.4 to 8.5 at 4 C for 24 hr, but occurred only at pH 9.0 or higher. The results suggest that organic cations that can be removed by electrodialysis play some part in tight binding to Mg2+ and in stabilizing the ordered hexagonal assembly of the R-form LPS.  相似文献   

19.
Existing literature describing the stoichiometry and stability of complexes between A23187 and divalent cations in solution has been extended to include additional transition series cations, the heavy-metal cations Cd2+ and Pb2+, plus seven lanthanide series trivalent cations. Stability constants of 1:1 complexes between the ionophore and the divalent cations vary by 6.2 orders of magnitude between Cu2+ and Ba2+ which are the strongest and weakest complexes, respectively. Considering alkaline-earth and first-series transition cations together, the pattern of stability constants obeys the extended Irving-Williams series as is seen with many nonionophorous liganding agents. Cd2+ and Pb2+ are bound with an affinity similar to those of Mn2+ and Zn2+, whereas the lanthanides are bound with little selectivity and slightly higher stability. Titration of the ionophore in the 10(-5) M concentration range with di- and trivalent cations gives rise first to complexes of stoichiometry MA2 and subsequently to MA as the metal concentration is increased. The second stepwise stability constants for formation of the MA2 species exceeds the first constant by approximately 10-fold. With lanthanides, heavy metals, and transition-metal cations, OH-, at near physiological concentrations, competes significantly with free ionophore for binding to the 1:1 complexes. This competition is not apparent when Ca2+ or Mg2+ are the central cations. Possible implications of the 1:1 complex selectivity pattern, the ionophore-hydroxide competitive binding equilibria, and potential ternary complexes involving 1:1 ionophore:cation complexes and other anions present in biological systems are discussed with respect to the ionophore's transport selectivity and biological actions.  相似文献   

20.
Effects of metal ions on sphingomyelinase activity of Bacillus cereus   总被引:5,自引:0,他引:5  
Some divalent metal ions were examined for their effects on sphingomyelinase activity of Bacillus cereus. The enzyme activity toward mixed micelles of sphingomyelin and Triton X-100 proved to be stimulated by Co2+ and Mn2+, as well as by Mg2+. Km's for Co2+ and Mn2+ were 7.4 and 1.7 microM, respectively, being smaller than the Km for Mg2+ (38 microM). Sr2+ proved to be a competitive inhibitor against Mg2+, with a Ki value of 1 mM. Zn2+ completely abolished the enzyme activity at concentrations above 0.5 mM. The concentration of Zn2+ causing 50% inhibition of the enzyme activity was 2.5 microM. Inhibition by Zn2+ was not restored by increasing concentrations of Mg2+ when the concentration of Zn2+ was above 10 microM. Ba2+ was without effect. When sphingomyelinase was incubated with unsealed ghosts of bovine erythrocytes at 37 degrees C, the enzyme was significantly adsorbed onto the membrane in the presence of Mn2+, Co2+, Sr2+ or Ba2+. Incubation with intact or Pronase-treated erythrocytes caused enzyme adsorption only in the presence of Mn2+. In the course of incubation, the enzyme was first adsorbed on the membranes of intact bovine erythrocytes in the presence of Mn2+; then sphingomyelin breakdown proceeded with ensuing desorption of adsorbed enzyme. Hot-cold hemolysis occurred in parallel with sphingomyelin breakdown. In this case, the hydrolysis of membranous sphingomyelin as well as the initial enzyme adsorption took place in the following order: unsealed ghosts greater than Pronase-treated erythrocytes greater than intact erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号