首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SCH 39166 [(-)-trans-6,7,7a,8,9, 13b-hexahydro-3-chloro-2-hydroxy-N-methyl-5H-benzo-[d]naphtho[2, 1b]azepine] has recently been described as a selective D1 antagonist and has entered clinical trials for the treatment of schizophrenia. The tritiated analogue of this compound, [3H]SCH 39166, has now been synthesized and characterized for its in vitro and in vivo binding profiles. [3H]SCH 39166 binds to D1 receptors in a saturable, high-affinity fashion, with a KD of 0.79 nM. In competition studies, D1-selective antagonists like SCH 23390 displaced the binding of [3H]SCH 39166 with nanomolar affinities, whereas antagonists of other receptors exhibited poor affinity. In vivo, [3H]SCH 39166 bound to receptors in rat striatum in a fashion suggestive of D1 selectivity. Further, when the time course for the binding of [3H]SCH 39166 was compared with the behavioral time course of the unlabeled compound, the two durations of action were virtually indistinguishable. Similar studies were performed for SCH 23390 and its tritiated analogue, but the in vivo binding of this radioligand exhibited a duration of action far greater than the behavioral activity of the unlabeled drug. In concert, these data demonstrate that [3H]SCH 39166 selectively labels D1 receptors in vitro and in vivo, and that this drug is superior for in vivo imaging of the D1 receptor.  相似文献   

2.
Dopamine D1 receptors were solubilized from canine and bovine striatal membranes with the detergent digitonin. The receptors retained the pharmacological characteristics of membrane-bound D1 receptors, as assessed by the binding of the selective antagonist [3H]SCH 23390. The binding of [3H]SCH 23390 to solubilized receptor preparations was specific, saturable, and reversible, with a dissociation constant of 5 nM. Dopaminergic antagonists and agonists inhibited [3H]SCH 23390 binding in a stereoselective and concentration-dependent manner with an appropriate rank order of potency for D1 receptors. Moreover, agonist high affinity binding to D1 receptors and its sensitivity to guanine nucleotides was preserved following solubilization, with agonist dissociation constants virtually identical to those observed with membrane-bound receptors. To ascertain the molecular basis for the existence of an agonist-high affinity receptor complex, D1 receptors labeled with [3H] dopamine (agonist) or [3H]SCH 23390 (antagonist) prior to, or following, solubilization were subjected to high pressure liquid steric-exclusion chromatography. All agonist- and antagonist-labeled receptor species elute as the same apparent molecular size. Treatment of brain membranes with the guanine nucleotide guanyl-5'-yl imidodiphosphate prior to solubilization prevented the retention of [3H]dopamine but not [3H]SCH 23390-labeled soluble receptors. This suggests that the same guanine nucleotide-dopamine D1 receptor complex formed in membranes is stable to solubilization and confers agonist high affinity binding in soluble preparations. These results contrast with those reported on the digitonin-solubilized dopamine D2 receptor, and the molecular mechanism responsible for this difference remains to be elucidated.  相似文献   

3.
The compound [9-3H]SCH23390 [R-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7- ol] was synthesized, and the binding of this purportedly selective antagonist of D1 3,4-dihydroxyphenylethylamine (dopamine) receptors was characterized. The regional distribution of high-affinity, specific [3H]SCH23390 binding sites in the rat brain correlated well with levels of endogenous dopamine. Receptor densities were greatest in corpus striatum, nucleus accumbens, and olfactory tubercle; intermediate levels were found in several limbic and cortical areas, whereas few sites were detectable in cerebellum, brainstem, and ol-factory bulb. Specific binding in caudate-putamen was found to be both temperature- and pH-dependent, with optima at 25-30 degrees C and pH 7.8-8.0. Scatchard or Woolf analyses of binding in caudate-putamen suggest that most of the sites are either of a single class or of classes with similar characteristics (KD = 0.7 +/- 0.1 nM; Bmax = 347 +/- 35 fmol/mg of protein). Both dopamine and cis-flupenthixol altered the slope but not the intercept of lines generated by Scatchard analysis, suggesting a competitive mode of inhibition of [3H]SCH23390 binding. Competition for binding by dopamine or the D1 agonist SKF38393 was inhibited by guanine nucleotides, whereas GTP had little effect on the competition for binding by the antagonist cis-flupenthixol. The competition for [3H]SCH23390 binding sites by dopamine was much more sensitive to GTP than was competition for [3H]spiperone binding. These data support the hypotheses that [3H]SCH23390 binds to recognition sites that differ from those previously described using other radiolabeled dopamine antagonists and that these sites have the characteristics expected of dopamine receptors.  相似文献   

4.
Dopamine D4-like binding sites are abundant in human cerebral cortex as detected by [3H]nemonapride. The extremely low density of D4 mRNA in human cerebral cortex is inconsistent with the high amount of D4-like binding sites. To investigate the nature of the D4-like receptors, [3H]nemonapride binding sites in the nonhuman primate cerebral cortex were characterized. Although [3H]nemonapride binding sites were D4-like, displaceable by clozapine but not raclopride, [3H]nemonapride binding was not displaced by selective D4 antagonists but was displaced by the selective 5-HT2A antagonist MDL100907. Using [3H]ketanserin as a 5-HT2A ligand, nemonapride showed high affinity for monkey (Ki = 10.4 nM) and cloned human (Ki = 9.4 nM) 5-HT2A receptors, while its affinity for rat receptors was lower (Ki = 140 nM). The present study demonstrates that cerebral cortical D4-like binding sites labeled by [3H]nemonapride in nonhuman primates consist of a very small portion of D4, but a substantial portion of 5-HT2A receptors. The unexpectedly high affinity of nemonapride for primate 5-HT2A receptor suggests reconsidering previous data from other studies using [3H]nemonapride, particularly those on D4-like receptors.  相似文献   

5.
Abstract

The interaction of SCH 23390 with dopamine (DA) and serotonin (5-HT) systems has been examined in vivo and in vitro. Like selective 5-HT2 blockers, SCH 23390 inhibited in vivo [3H]spiperone binding in the rat frontal cortex (ID50: 1.5 mg/kg) without interacting at D2 sites. SCH 23390 was equipotent to cinanserin and methysergide. In vitro, SCH 23390 inhibited [3H]ketanserin binding to 5-HT2 sites (IC50 = 30 nM). Biochemical parameters linked to DA and 5-HT were not changed excepted in striatum where SCH 23390 increased HVA and DOPAC. In the L-5-HTP syndrome model, SCH 23390 clearly showed antagonism of 5-HT2 receptors. SCH 23390 had weak affinity for 5-HT1B (IC50 = 0.5 μM), 5-HT1A (IC50 = 2.6 μM) and α;1-adenergic receptors (IC50 = 4.4 μM).  相似文献   

6.
D1-selective dopamine receptor agonists inhibit secretagogue-stimulated catecholamine secretion from bovine adrenal chromaffin cells. The purpose of the studies reported here was to use the radiolabeled D1-selective dopamine receptor antagonist, SCH23390, to characterize putative D1-like dopamine receptors responsible for this effect. Characterization of SCH23390 binding sites demonstrated an unusual pharmacological profile inconsistent with classical D1-like receptors. [125I]SCH23390 bound to adrenal medullary membranes was competed for by non-radioactive iodo-SCH23390 (Kd = 490 ± 50 nM), but not by (+)butaclamol. Other classical D1 antagonists had little, if any, effect. Competition with dopamine receptor agonists demonstrated a relative rank order of potency profile characteristic of D1-like dopamine receptors, however, Kis were higher than those found in other tissues. The Kis for competition of [125I]SCH23390 binding by C1-APB and SKF38393 (16 and 118 M, respectively) are nearly identical to the IC50s previously observed for inhibition of secretion (9 and 100 M, respectively). Combined these data suggest that adrenal medullary membranes contain a novel SCH23390 binding site involved in the inhibition of secretion by D1-selective agonists.  相似文献   

7.
[3H]Serotonin (5-hydroxytryptamine, [3H]5-HT) was used as a radioligand probe of brain 5-HT receptors in homogenates of human cortical tissue. Two binding sites were detected in the presence of 1 microM pindolol (to block 5-HT1A and 5-HT1B receptors), and 100 nM mesulergine (to block 5-HT1C and 5-HT2 receptors). One of these sites demonstrated high affinity for 5-carboxyamidotryptamine (5-CT) and ergotamine, consistent with the known pharmacology of the 5-HT1D receptor; the second site demonstrated low affinity for 5-CT and ergotamine. Computer-assisted analyses indicated that both drugs displayed high affinities (Ki values of 1.1 nM and 0.3 nM for 5-CT and ergotamine, respectively) for 55% of the sites and low affinities (Ki values of 910 nM and 155 nM for 5-CT and ergotamine, respectively) for 45% of the sites. To investigate the non-5-HT1D component of the binding, 100 nM 5-CT (to block 5-HT1A, 5-HT1B, and 5-HT1D receptors) was coincubated with [3H]5-HT, membranes, and mesulergine. The remaining [3H]5-HT binding (hereafter referred to as "5-HT1E") displayed high affinity and saturability (KD, 5.3 nM; Bmax, 83 fmol/mg) in human cortical tissue. Competition studies with nonradioactive drugs indicated that, of the drugs tested, 5-CT and ergotamine displayed the highest selectivity for the 5-HT1D site versus the 5-HT1E site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
New benzimidazole-4-carboxamides 1-16 and -carboxylates 17-26 were synthesized and evaluated for binding affinity at serotonergic 5-HT4 and 5-HT3 receptors in the CNS. Most of the synthesized compounds exhibited moderate-to-very high affinity (in many cases subnanomolar) for the 5-HT4 binding site and no significant affinity for the 5-HT3 receptor. SAR observations and structural analyses (molecular modeling, INSIGHT II) indicated that the presence of a voluminous substituent in the basic nitrogen atom of the amino moiety and a distance of ca. 8.0 A from this nitrogen to the aromatic ring are of great importance for high affinity and selectivity for 5-HT4 receptors. These results confirm our recently proposed model for recognition by the 5-HT4 binding site. Amides 12-15 and esters 24 and 25 bound at central 5-HT4 sites with very high affinity (Ki = 0.11-2.9 nM) and excellent selectivity over serotonin 5-HT3, 5-HT2A, and 5-HT1A receptors (Ki > 1000-10,000 nM). Analogues 12 (Ki(5-HT4) = 0.32 nM), 13 (Ki(5-HT4) = 0.11 nM), 14 (Ki(5-HT4) = 0.29 nM) and 15 (Ki(5-HT4) = 0.54 nM) were pharmacologically characterized as selective 5-HT4 antagonists in the isolated guinea pig ileum (pA2 = 7.6, 7.9, 8.2 and 7.9, respectively), with a potency comparable to the 5-HT4 receptor antagonist RS 39604 (pA2 = 8.2). The benzimidazole-4-carboxylic acid derivatives described in this paper represent a novel class of potent and selective 5-HT4 receptor antagonists. In particular, compounds 12-15 could be interesting pharmacological tools for the understanding of the role of 5-HT4 receptors.  相似文献   

9.
A test series of 32 phenylpiperazines III with affinity for 5-HT1A and alpha1 receptors was subjected to QSAR analysis using artificial neural networks (ANNs), in order to get insight into the structural requirements that are responsible for 5-HT1A/alpha1 selectivity. Good models and predictive power were obtained for 5-HT1A and alpha1 receptors. A comparison of these models gives information for the design of the new ligand EF-7412 (5-HT1A:Ki(nM)= 27; alpha1: Ki(nM) > 1000). This derivative displayed affinity for dopamine D2 receptor (Ki = 22 nM) and is selective for all other receptor examined (5-HT2A, 5-HT3, 5-HT4 and Bz). EF-7412 acts an antagonist in vivo in pre- and postsynaptic 5-HT1A receptor sites and as an antagonist in dopamine D2 receptor.  相似文献   

10.
D1 and D2 dopamine receptors were characterized in the caudate-putamen region of nonhuman primate brains (Macaca fascicularis). D1 dopamine receptors were identified with [3H]SCH 23390 and D2 receptors with [3H]-spiperone. Scatchard analysis of [3H]SCH 23390 saturation data using washed membranes revealed a single high-affinity binding site (KD, 0.352 +/- 0.027 nM) with a density (Bmax) of 35.7 +/- 2.68 pmol/g original wet tissue weight (n = 10). The affinity of [3H]spiperone for the D2 site was 0.039 +/- 0.007 nM and the density was 25.7 +/- 1.97 pmol/g original wet tissue weight (n = 10). D1 and D2 receptors in nonhuman primates may be differentiated on the basis of drug affinities and stereoselectivity. In competition experiments, RS-SKF 38393 was the most selective D1 agonist, whereas (+)-4-propyl-9-hydroxynaphthoxazine [(+)-PHNO] was the most selective D2 agonist. Apomorphine was essentially nonselective for D1 or D2 binding sites. Of the antagonists, R-SKF 83566 and SCH 23390 were the most selective for the D1 site, whereas YM-09151-2 was the most selective for the D2 site. cis-Flupentixol and (S)-butaclamol were the least selective dopamine antagonists. D1 receptors bound benzazepine antagonists (SCH 23390/SCH 23388, R-SKF 83692/RS-SKF 83692) stereoselectively whereas D2 receptors did not. Conversely D2 receptors bound (S)-sulpiride and (+)-PHNO more potently than their enantiomers whereas D1 receptors showed little stereoselectively for each of these isomeric pairs. These binding characteristics may be utilized for evaluation of individual receptor function in vivo.  相似文献   

11.
SCH-23390 is a high-affinity antagonist selective for D1 dopamine receptors (Ki = 2.5 nM). It does not contain a functional group that can be conveniently coupled to commercially available resins for affinity chromatography or to prepare photolabels for photoaffinity labeling of receptors. To construct an affinity resin for purification of dopamine D1 receptors, an aldehyde analogue of SCH-23390, (+/-)-7-chloro-8-hydroxy-1-(4'-formylphenyl)-3-methyl-2,3,4,5-tetrahydro -1H- 3-benzazepine (ASCH), was synthesized. 8-Methoxy-1-(4'-bromophenyl)-SCH-23390 was lithiated, formylated, and O-demethylated to form the aldehyde. NMR and IR analyses were performed to characterize the product. Assays were performed with the radioligand [125I]SCH-23982 to define the biological activity of the aldehyde. ASCH displaced [125I]SCH-23982 binding from caudate membranes with a Ki value of 7.1 nM. ASCH has been coupled through the aldehyde group on the phenyl ring to diaminodipropylamine-agarose for affinity chromatography. After solubilization of caudate membranes in 1% digitonin, the affinity resin retained binding sites for [125I]SCH-23982 that were eluted with 10 mM SCH-23390. The aldehyde was also covalently coupled to biotin hydrazide for fluorescence labeling of dopamine D1 receptors. The biotin-conjugated aldehyde of SCH-23390 displaced [125I]SCH-23982 binding from caudate membranes with a Ki value of 9.3 nM.  相似文献   

12.
W C Xiong  D L Nelson 《Life sciences》1989,45(16):1433-1442
[3H]5-HT binding sites were analyzed in membranes prepared from the rabbit caudate nucleus (CN). [3H]5-HT labeled both 5-HT1A and 5-HT1C recognition sites, defined by nanomolar affinity for 8-OH-DPAT and mesulergine respectively; however, these represented only a fraction of total specific [3H]5-HT binding. Saturation experiments of [3H]5-HT binding in the presence of 100 nM 8-OH-DPAT and 100 nM mesulergine to block 5-HT1A and 5-HT1C sites revealed that non-5-HT1A/non-5-HT1C sites represented about 60% of the total 5-HT1 sites and that they exhibited saturable, high affinity, and homogeneous binding. The pharmacological profile of the non-5-HT1A/non-5-HT1C sites (designated 5-HT1R) also differed from that of 5-HT1B and 5-HT2 sites, but was similar to that of the 5-HT1D site. However, significant differences existed between the 5-HT1D and 5-HT1R sites for their Ki values for spiperone, spirilene (an analog of spiperone), metergoline, and methiothepin. The study of modulatory agents (calcium and GTP) also showed differences between the 5-HT1R and 5-HT1D sites. For example, the effects of GTP on agonist binding to the 5-HT1R sites were less than on the 5-HT1D sites in bovine caudate. In addition, calcium enhanced the effects of GTP on the 5-HT1R sites, whereas calcium inhibited the GTP effect on the 5-HT1D sites. The present findings demonstrate the presence of a high-affinity [3H]5-HT binding site in rabbit CN, designated 5-HT1R, that is different from previously defined 5-HT1A, 5-HT1B, 5-HT1C, 5-HT1D, and 5-HT2 sites.  相似文献   

13.
3,4-Dihydroxyphenylethylamine (dopamine) and beta-adrenergic receptor agonists and antagonists were assessed for their effects on cyclic AMP accumulation in human astrocytoma derived clone D384 cells. Dopamine, SKF 38393, and 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene increased cyclic AMP content with Ka values of 2.0, 0.2, and 1.6 microM. The D1-selective antagonists SCH 23390 (Ki, 1.2 nM) and SKF 83566 (Ki, 0.8 nM) were over 5,000-fold more potent than the D2-selective antagonist domperidone (Ki, 6.7 microM) at inhibiting dopamine stimulation of cyclic AMP formation. SCH 23388 (Ki, 560 nM; the S-enantiomer of SCH 23390) was 400-fold less potent than SCH 23390. Isoprenaline, adrenaline, salbutamol, and noradrenaline increased cyclic AMP content with Ka values of 0.13, 0.12, 0.22, and 7.60 microM. The beta 2-selective antagonist ICI 118,551 (Ki,0.8 nM) was almost 8,000-fold more potent than the beta 1-selective antagonist practolol (Ki, 5.9 microM) at inhibiting isoprenaline stimulated cyclic AMP accumulation. These results demonstrate that D384 cells express D1-dopamine and beta 2-adrenergic receptors linked to adenylate cyclase. Furthermore, the dopamine receptor expressed by D384 cells exhibits a pharmacological profile typical of a mammalian striatal D1-receptor and therefore the use of this clone represents another approach to studying central D1-receptors.  相似文献   

14.
Intrastriatal application of the D1 antagonist SCH 23390 by two procedures, reverse dialysis (20 microM) and local injection (0.45 nmol per striatum), elicited a reduction in acetylcholine (ACh) release superimposable on that induced by systemic administration. The novel selective D1 antagonist SCH 39166 produced a similar decreasing effect on striatal ACh release on local injection (0.45 nmol per striatum). On the other hand, local application of SCH 23390 into the frontal cortices (0.45 nmol per side) failed to alter striatal ACh overflow, indicating that the drug does not diffuse out of its injection site to any significant extent. The dopamine release inducer d-amphetamine (2 mg/kg s.c.) and the dopamine uptake inhibitor cocaine raised ACh release like the D1 agonists. These effects were completely blocked by 10 microM SCH 23390 applied by reverse dialysis. The results suggest that D1 receptors regulating ACh release are located in the striatum.  相似文献   

15.
A series of 6 tricyclic partial ergoline derivatives was analyzed using radioligand binding assays. Four agents (LY 178210, LY 254089, LY 197205, and LY 197206) display high affinity (Ki less than or equal to 1.3 nM) for 5-hydroxytryptamine1A (5-HT1A) receptor binding sites labeled by [3H]8-hydroxy- 2-(di-n-propylamino) tetralin (8-OH-DPAT) and display greater than or equal to 150 fold selectivity for the 5-HT1A over the 5-HT1D receptor binding site. The most potent agent investigated, LY 178210, is essentially inactive (Ki greater than 1500 nM) at a total of 12 other neurotransmitter receptor binding sites in the brain. Using a forskolin-stimulated adenylate cyclase assay as a model of 5-HT1A receptor function, LY 178210 was found to display partial agonist activity which was blocked by 10(-5) M (-)pindolol. These data indicate that LY 178210 is a potent and selective 5-HT1A receptor partial agonist.  相似文献   

16.
Identification of D1-like dopamine receptors on human blood platelets   总被引:1,自引:0,他引:1  
Dopamine is able to inhibit the epinephrine-induced aggregation of human blood platelets, but the mechanism of action has not been elucidated. In this study we report that membranes from human blood platelets possess high affinity, saturable and stereoselective binding sites for the D1 dopamine receptor antagonist (3H) SCH 23390. (3H) SCH 23390 appeared to label a single class of binding sites with a Bmax of 18.6 +/- 1.6 fmol/mg protein and a KD of 0.8 nM. The potencies of different dopaminergic antagonists and agonists in displacing (3H) SCH 23390 from blood platelet membranes were similar to those obtained for striatal membranes. Unlike the classically defined D1 receptors, e.g. those in striatum, the D1 receptor sites on platelets appeared not to be coupled to the adenylate cyclase system, hence the term "D1-like". The D1 agonist SKF 38393 was more potent than dopamine in inhibiting platelet aggregation induced by epinephrine, and the effects of dopamine and SKF 38393 were prevented by SCH 23390. These results suggest that the inhibitory action of dopamine on the epinephrine-induced platelet aggregation is mediated through these D1-like receptors.  相似文献   

17.
Dopamine or agonists with D1 receptor potency stimulated cyclic AMP (cAMP) accumulation in whole cell preparations of NS20Y neuroblastoma cells. The accumulation of cAMP after D1 stimulation was rapid and linear for 3 min. Both dopamine and the novel D1 receptor agonist dihydrexidine stimulated cAMP accumulation two- to three-fold over baseline. The pseudo-Km for dopamine was approximately 2 microM, whereas for dihydrexidine it was approximately 30 nM. The effects of both drugs were blocked by either the D1-selective antagonist SCH23390 (Ki, 0.3 nM) or the nonselective antagonist (+)-butaclamol (Ki, 5 nM). Both (-)-butaclamol and the D2-selective antagonist (-)-sulpiride were ineffective (Ki greater than 3 microM). Forskolin (10 microM), prostaglandin E1 (1 microM), and adenosine (10 microM) also stimulated cAMP accumulation, but none were antagonized by SCH23390 (1 microM). Finally, muscarinic receptor stimulation (100 microM carbachol) inhibited both D1- and forskolin-stimulated increases in cAMP accumulation by 80%. The present results indicate that NS20Y neuroblastoma cells have D1 receptors that are coupled to adenylate cyclase, and that these receptors have a pharmacological profile similar to that of the D1 receptor(s) found in rat striatum.  相似文献   

18.
Drug interactions with 5-HT1 (5-hydroxytryptamine type 1) binding site subtypes were analyzed in rat frontal cortex. 8-Hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-DPAT) displays high affinity (Ki 3.3 +/- 1 nM) for 29 +/- 3% of total [3H]5-HT binding in rat frontal cortex and low affinity (Ki 9,300 +/- 1,000) for 71 +/- 4% of the remaining 5-HT1 sites. Therefore, non-5-HT1A binding in rat frontal cortex was defined as specific [3H]5-HT binding observed in the presence of 100 nM 8-OH-DPAT. 5-Methoxy 3-(1,2,3,6-tetrahydro-4-pyridinyl) 1 H indole (RU 24969), 1-(m-trifluoromethylphenyl)piperazine (TFMPP), mianserin, and methysergide produce shallow competition curves of [3H]5-HT binding from non-5-HT1A sites. Addition of 10(-3) M GTP does not increase the apparent Hill slopes of these competition curves. Computer-assisted iterative curve fitting suggests that these drugs can discriminate two distinct subpopulations of non-5-HT1A binding sites, each representing approximately 35% of the total [3H]5-HT binding in the rat frontal cortex. All three 5-HT1 binding site subtypes display nanomolar affinity for 5-HT and 5-methoxytryptamine. A homogeneous population of 5-HT1A sites can be directly labeled using [3H]8-OH-DPAT. These sites display nanomolar affinity for 8-OH-DPAT, WB 4101, RU 24969, 2-(4-[4-(2-pyrimidinyl)-1-piperazinyl] butyl)-1,2-benzisothiazol-3-(2H)one-1, 1-dioxidehydrochloride (TVX Q 7821), 5-methoxydimethyltryptamine, and d-lysergic acid diethylamide. The potencies of RU 24969, TFMPP, and quipazine for [3H]5-HT binding are increased by addition of 100 nM 8-OH-DPAT and 3,000 nM mianserin to the [3H]5-HT binding assay. Moreover, the drugs have apparent Hill slopes near 1 under these conditions. This subpopulation of total [3H]5-HT binding is designated 5-HT1B. By contrast, methysergide and mianserin become more potent inhibitors of residual [3H]5-HT binding to non-5-HT1A sites in the presence of 100 nM 8-OH-DPAT and 10 nM RU 24969. The drug competition curves under these conditions have apparent Hill slopes of near unity and these sites are designated 5-HT1C. Drug competition studies using a series of 24 agents reveals that each 5-HT1 subtype site has a unique pharmacological profile. These results suggest that radioligand studies can be used to differentiate three distinct subpopulations of 5-HT1 binding sites labeled by [3H]5-HT in rat frontal cortex.  相似文献   

19.
Receptor binding studies were performed in cerebral cortex (CTX) and neostriatum (CPU; caudate-putamen) using the dopamine D1 antagonist [3H]SCH23390. Because receptors are of protein nature, we examined the role of disulfide bonds (--SS--) and sulfhydryl groups (--SH) in the specific binding of [3H]SCH23390. Furthermore, membrane preparations contain a certain amount of lipid, so that treatments with --SH and --SS-- reagents could determine whether the fixation of the radioligand was to protein or to the lipid moiety. Pretreatment of CTX and CPU membranes with dithioerythritol, L-dithiothreitol, or 5,5'-dithiobis(2-nitrobenzoic acid), as well as with the alkylating agent N-ethylmaleimide, produced dose-dependent decreases of specific [3H]SCH23390 binding in membrane preparations from both tissues. These changes were not reversible after up to two washes, but could be prevented in part if the treatments were performed in the presence of dopamine. Additional protection experiments were conducted with (+)- and (-)-butaclamol, as well as with (+)- and (-)-SKF38393. A series of saturation experiments (with pretreated membranes in the absence of reactives) demonstrated that the alkylation of --SS-- groups reduced specific [3H]SCH23390 binding mainly through an affinity change, but L-dithiothreitol and 5,5-dithiobis(2-nitrobenzoic acid) decreased the number of binding sites. The affinity of the receptor to agonists was examined with the two enantiomers of SKF38393; the inhibition curves showed that residual binding was not affected and stereospecificity was conserved. The present results provide evidence for the participation of both --SS-- and --SH groups in the recognition site of the dopamine D1 receptor in both the CTX and the CPU.  相似文献   

20.
SCH 23390, an apparently selective antagonist of central D1 dopamine receptors, produced profound catalepsy at low doses (0.1 mg/kg, s.c.). Pretreatment with the selective D2 receptor agonists LY 141865, RU 24213 or LY 171555, the active (-) enantiomer of LY 141865, elicited a dose-dependent inhibition of the cataleptic response. Pergolide and apomorphine were also effective. This effect was not due to altered disposition or penetration of SCH 23390 into the brain since pretreatment with a dose of LY 171555 which completely blocked catalepsy had no effect on the ID50 of SCH 23390 to inhibit 3H-cis-piflutixol binding to D1 receptors measured ex vivo. Alternative mechanisms are considered to explain the results, which offer new insights into striatal dopaminergic regulation of motor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号