首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maternally inherited facultative endosymbiotic bacteria are common among insects, including many polyphagous insect herbivores. To investigate whether symbiont infection is structured by host plant in the polyphagous aphid Aphis craccivora Koch, pyrosequencing and diagnostic PCR were performed on 26 populations from two different host plants, alfalfa (Medicago sativa) or black locust (Robinia pseudoacacia). Results indicated that Aphis craccivora harbours distinctly different microbial communities in alfalfa versus locust. The facultative symbiont Hamiltonella was found only in aphids collected from alfalfa, and the facultative symbiont Arsenophonus was found only in aphids from locust. Hamiltonella is known to protect aphids against hymenopteran parasitoids, whereas the phenotypic effects of Arsenophonus in aphids are unknown. Correspondingly, a screen of the aphid samples for hymenopteran DNA indicated that Hamiltonella‐bearing alfalfa populations of A. craccivora experienced lower parasitism than Arsenophonus‐bearing locust populations. This study contributes to the growing body of evidence that correlative associations between bacterial endosymbionts and host plants may be a common phenomenon in polyphagous herbivores, and suggests that microbial symbionts have the potential to act as drivers for observed ecological differences among host‐associated populations of polyphagous insects.  相似文献   

2.
Many insects harbour facultative endosymbiotic bacteria, often more than one type at a time. These symbionts can have major effects on their hosts' biology, which may be modulated by the presence of other symbiont species and by the host's genetic background. We investigated these effects by transferring two sets of facultative endosymbionts (one Hamiltonella and Rickettsia, the other Hamiltonella and Spiroplasma) from naturally double‐infected pea aphid hosts into five novel host genotypes of two aphid species. The symbionts were transferred either together or separately. We then measured aphid fecundity and susceptibility to an entomopathogenic fungus. The pathogen‐protective phenotype conferred by the symbionts Rickettsia and Spiroplasma varied among host genotypes, but was not influenced by co‐infection with Hamiltonella. Fecundity varied across single and double infections and between symbiont types, aphid genotypes and species. Some host genotypes benefit from harbouring more than one symbiont type.  相似文献   

3.
Heritable microbial symbionts can have important effects on many aspects of their hosts’ biology. Acquisition of a novel symbiont strain can provide fitness benefits to the host, with significant ecological and evolutionary consequences. We measured barriers to horizontal transmission by artificially transferring facultative symbionts from the grain aphid, Sitobion avenae, and five other aphid species into two clonal genotypes of S. avenae. We found the symbiont Hamiltonella defensa establishes infections more easily following a transfer from the same host species and that such infections are more stable. Infection success was also higher when the introduced symbiont strain was more closely related to the strain that was originally present in the host (but which had previously been removed). There were no differences among successfully established symbiont strains in their effect on aphid fecundity. Hamiltonella defensa did not confer protection against parasitoids in our S. avenae clones, although it often does in other aphid hosts. However, strains of the symbiont Regiella insecticola originating from two host species protected grain aphids against the pathogenic fungus Pandora neoaphidis. This study helps describe the extent to which facultative symbionts can act as a pool of adaptations that can be sampled by their eukaryote hosts.  相似文献   

4.
A gammaproteobacterial facultative symbiont of the genus Rickettsiella was recently identified in the pea aphid, Acyrthosiphon pisum. Infection with this symbiont altered the color of the aphid body from red to green, potentially affecting the host''s ecological characteristics, such as attractiveness to different natural enemies. In European populations of A. pisum, the majority of Rickettsiella-infected aphids also harbor another facultative symbiont, of the genus Hamiltonella. We investigated this Rickettsiella symbiont for its interactions with the coinfecting Hamiltonella symbiont, its phenotypic effects on A. pisum with and without Hamiltonella coinfection, and its infection prevalence in A. pisum populations. Histological analyses revealed that coinfecting Rickettsiella and Hamiltonella exhibited overlapping localizations in secondary bacteriocytes, sheath cells, and hemolymph, while Rickettsiella-specific localization was found in oenocytes. Rickettsiella infections consistently altered hosts'' body color from red to green, where the greenish hue was affected by both host and symbiont genotypes. Rickettsiella-Hamiltonella coinfections also changed red aphids to green; this greenish hue tended to be enhanced by Hamiltonella coinfection. With different host genotypes, Rickettsiella infection exhibited either weakly beneficial or nearly neutral effects on host fitness, whereas Hamiltonella infection and Rickettsiella-Hamiltonella coinfection had negative effects. Despite considerable frequencies of Rickettsiella infection in European and North American A. pisum populations, no Rickettsiella infection was detected among 1,093 insects collected from 14 sites in Japan. On the basis of these results, we discuss possible mechanisms for the interaction of Rickettsiella with other facultative symbionts, their effects on their hosts'' phenotypes, and their persistence in natural host populations. We propose the designation “Candidatus Rickettsiella viridis” for the symbiont.  相似文献   

5.
Microbial associates are widespread in insects, some conferring a protection to their hosts against natural enemies like parasitoids. These protective symbionts may affect the infection success of the parasitoid by modifying behavioral defenses of their hosts, the development success of the parasitoid by conferring a resistance against it or by altering life-history traits of the emerging parasitoids. Here, we assessed the effects of different protective bacterial symbionts on the entire sequence of the host-parasitoid interaction (i.e., from parasitoid attack to offspring emergence) between the pea aphid, Acyrthosiphon pisum, and its main parasitoid, Aphidius ervi and their impacts on the life-history traits of the emerging parasitoids. To test whether symbiont-mediated phenotypes were general or specific to particular aphid–symbiont associations, we considered several aphid lineages, each harboring a different strain of either Hamiltonella defensa or Regiella insecticola, two protective symbionts commonly found in aphids. We found that symbiont species and strains had a weak effect on the ability of aphids to defend themselves against the parasitic wasps during the attack and a strong effect on aphid resistance against parasitoid development. While parasitism resistance was mainly determined by symbionts, their effects on host defensive behaviors varied largely from one aphid–symbiont association to another. Also, the symbiotic status of the aphid individuals had no impact on the attack rate of the parasitic wasps, the parasitoid emergence rate from parasitized aphids nor the life-history traits of the emerging parasitoids. Overall, no correlations between symbiont effects on the different stages of the host–parasitoid interaction was observed, suggesting no trade-offs or positive associations between symbiont-mediated phenotypes. Our study highlights the need to consider various sequences of the host-parasitoid interaction to better assess the outcomes of protective symbioses and understand the ecological and evolutionary dynamics of insect–symbiont associations.  相似文献   

6.
Facultative bacterial endosymbionts can play an important role in the evolutionary trajectory of their hosts. Aphids (Hemiptera: Aphididae) are infected with a wide variety of facultative endosymbionts that can confer ecologically relevant traits, which in turn may drive microevolutionary processes in a dynamic selective environment. However, relatively little is known about how symbiont diversity is structured in most aphid species. Here, we investigate facultative symbiont species richness and prevalence among worldwide populations of the cowpea aphid, Aphis craccivora Koch. We surveyed 44 populations of A. craccivora, and detected 11 strains of facultative symbiotic bacteria, representing six genera. There were two significant associations between facultative symbiont and aphid food plant: the symbiont Arsenophonus was found at high prevalence in A. craccivora populations collected from Robinia sp. (locust), whereas the symbiont Hamiltonella was almost exclusively found in A. craccivora populations from Medicago sativa (alfalfa). Aphids collected from these two food plants also had divergent mitochondrial haplotypes, potentially indicating the formation of specialized aphid lineages associated with food plant (host-associated differentiation). The role of facultative symbionts in this process remains to be determined. Overall, observed facultative symbiont prevalence in A. craccivora was lower than that of some other well-studied aphids (e.g., Aphis fabae and Acyrthosiphon pisum), possibly as a consequence of A. craccivora's almost purely parthenogenetic life history. Finally, most (70 %) of the surveyed populations were polymorphic for facultative symbiont infection, indicating that even when symbiont prevalence is relatively low, symbiont-associated phenotypic variation may allow population-level evolutionary responses to local selection.  相似文献   

7.
Symbiotic associations between microbes and insects are widespread, and it is frequent that several symbionts share the same host individual. Hence, interactions can occur between these symbionts, influencing their respective abundance within the host with consequences on its phenotype. Here, we investigate the effects of multiple infections in the pea aphid, Acyrthosiphon pisum, which is the host of an obligatory and several facultative symbionts. In particular, we study the influence of a coinfection with 2 protective symbionts: Hamiltonella defensa, which confers protection against parasitoids, and Rickettsiella viridis, which provides protection against fungal pathogens and predators. The effects of HamiltonellaRickettsiella coinfection on the respective abundance of the symbionts, host fitness and efficacy of enemy protection were studied. Asymmetrical interactions between the 2 protective symbionts have been found: when they coinfect the same aphid individuals, the Rickettsiella infection affected Hamiltonella abundance within hosts but not the Hamiltonella‐mediated protective phenotype while the Hamiltonella infection negatively influences the Rickettsiella‐mediated protective phenotype but not its abundance. Harboring the 2 protective symbionts also reduced the survival and fecundity of host individuals. Overall, this work highlights the effects of multiple infections on symbiont abundances and host traits that are likely to impact the maintenance of the symbiotic associations in natural habitats.  相似文献   

8.
In order to reduce parasite‐induced mortality, hosts may be involved in mutualistic interactions in which the partner contributes to resistance against the parasite. The pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), harbours secondary bacterial endosymbionts, some of which have been reported to confer resistance against aphid parasitoids. Although this resistance often results in death of the developing parasitoid larvae, some parasitoid individuals succeed in developing into adults. Whether these individuals suffer from fitness reduction compared to parasitoids developing in pea aphid clones without symbionts has not been tested so far. Using 30 pea aphid clones that differed in their endosymbiont complement, we studied the effects of these endosymbionts on aphid resistance against the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae: Aphidiinae), host–parasitoid physiological interactions, and fitness of emerging adult parasitoids. The number of symbiont species in an aphid clone was positively correlated with a number of resistance measurements but there were also clear symbiont‐specific effects on the host–parasitoid interaction. As in previous studies, pea aphid clones infected with Hamiltonella defensa Moran et al. showed resistance against the parasitoid. In addition, pea aphid clones infected with Regiella insecticola Moran et al. and co‐infections of H. defensaSpiroplasma, R. insecticolaSpiroplasma, and R. insecticolaH. defensa showed reduced levels of parasitism and mummification. Parasitoids emerging from symbiont‐infected aphid clones often had a longer developmental time and reduced mass. The number of teratocytes was generally lower when parasitoids oviposited in aphid clones with a symbiont complement. Interestingly, unparasitized aphids infected with Serratia symbiotica Moran et al. and R. insecticola had a higher fecundity than unparasitized aphids of uninfected pea aphid clones. We conclude that in addition to conferring resistance, pea aphid symbionts also negatively affect parasitoids that successfully hatch from aphid mummies. Because of the link between aphid resistance and the number of teratocytes, the mechanism underlying resistance by symbiont infection may involve interference with teratocyte development.  相似文献   

9.
Temperature variation is an important factor determining the outcomes of interspecific interactions, including those involving hosts and parasites. This can apply to variation in average temperature or to relatively short but intense bouts of extreme temperature. We investigated the effect of heat shock on the ability of aphids (Aphis fabae) harbouring protective facultative endosymbionts (Hamiltonella defensa) to resist parasitism by Hymenopteran parasitoids (Lysiphlebus fabarum). Furthermore, we investigated whether heat shocks can modify previously observed genotype-by-genotype (G x G) interactions between different endosymbiont isolates and parasitoid genotypes. Lines of genetically identical aphids possessing different isolates of H. defensa were exposed to one of two heat shock regimes (35°C and 39°C) or to a control temperature (20°C) before exposure to three different asexual lines of the parasitoids. We observed strong G x G interactions on parasitism rates, reflecting the known genetic specificity of symbiont-conferred resistance, and we observed a significant G x G x E interaction induced by heat shocks. However, this three-way interaction was mainly driven by the more extreme heat shock (39°C), which had devastating effects on aphid lifespan and reproduction. Restricting the analysis to the more realistic heat shock of 35°C, the G x G x E interaction was weaker (albeit still significant), and it did not lead to any reversals of the aphid lines'' susceptibility rankings to different parasitoids. Thus, under conditions feasibly encountered in the field, the relative fitness of different parasitoid genotypes on hosts protected by particular symbiont strains remains mostly uncomplicated by heat stress, which should simplify biological control programs dealing with this system.  相似文献   

10.
Insects harbour a wild diversity of symbionts that can spread and persist within populations by providing benefits to their host. The pea aphid Acyrthosiphon pisum maintains a facultative symbiosis with the bacterium Hamiltonella defensa, which provides enhanced resistance against the aphid parasitoid Aphidius ervi. Although the mechanisms associated with this symbiotic‐mediated protection have been investigated thoroughly, little is known about its evolutionary effects on parasitoid populations. We used an experimental evolution procedure in which parasitoids were exposed either to highly resistant aphids harbouring the symbiont or to low innate resistant hosts free of H. defensa. Parasitoids exposed to H. defensa gained virulence over time, reaching the same parasitism rate as those exposed to low aphid innate resistance only. A fitness reduction was associated with this adaptation as the size of parasitoids exposed to H. defensa decreased through generations. This study highlighted the considerable role of symbionts in host–parasite co‐evolutionary dynamics.  相似文献   

11.
Aphids commonly harbor bacterial facultative symbionts that have a variety of effects upon their aphid hosts, including defense against hymenopteran parasitoids and fungal pathogens. The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is infected with the symbiont Arsenophonus sp., which has an unknown role in its aphid host. Our research goals were to document the infection frequency and diversity of the symbiont in field-collected soybean aphids, and to determine whether Arsenophonus is defending soybean aphid against natural enemies. We performed diagnostic PCR and sequenced four Arsenophonus genes in soybean aphids from their native and introduced range to estimate infection frequency and genetic diversity, and found that Arsenophonus infection is highly prevalent and genetically uniform. To evaluate the defensive role of Arsenophonus, we cured two aphid genotypes of their natural Arsenophonus infection through ampicillin microinjection, resulting in infected and uninfected isolines within the same genetic background. These isolines were subjected to parasitoid assays using a recently introduced biological control agent, Binodoxys communis [Braconidae], a naturally recruited parasitoid, Aphelinus certus [Aphelinidae], and a commercially available biological control agent, Aphidius colemani [Braconidae]. We also assayed the effect of the common aphid fungal pathogen, Pandora neoaphidis (Remaudiere & Hennebert) Humber (Entomophthorales: Entomophthoraceae), on the same aphid isolines. We did not find differences in successful parasitism for any of the parasitoid species, nor did we find differences in P. neoaphidis infection between our treatments. Our conclusion is that Arsenophonus does not defend its soybean aphid host against these major parasitoid and fungal natural enemies.  相似文献   

12.
Population dynamics of defensive symbionts in aphids   总被引:3,自引:0,他引:3  
Vertically transmitted micro-organisms can increase in frequency in host populations by providing net benefits to hosts. While laboratory studies have identified diverse beneficial effects conferred by inherited symbionts of insects, they have not explicitly examined the population dynamics of mutualist symbiont infection within populations. In the pea aphid, Acyrthosiphon pisum, the inherited facultative symbiont, Hamiltonella defensa, provides protection against parasitism by the wasp, Aphidius ervi. Despite a high fidelity of vertical transmission and direct benefits of infection accruing to parasitized aphids, Hamiltonella remains only at intermediate frequencies in natural populations. Here, we conducted population cage experiments to monitor the dynamics of Hamiltonella and of another common A. pisum symbiont, Serratia symbiotica, in the presence and absence of parasitism. We also conducted fitness assays of Hamiltonella-infected aphids to search for costs to infection in the absence of parasitism. In the population cages, we found that the frequency of A. pisum infected with Hamiltonella increased dramatically after repeated exposure to parasitism by A. ervi, indicating that selection pressures from natural enemies can lead to the increase of particular inherited symbionts in insect populations. In our laboratory fitness assays, we did not detect a cost to infection with Hamiltonella, but in the population cages not exposed to parasitism, we found a significant decline in the frequency of both Hamiltonella and Serratia. The declining frequencies of Hamiltonella-infected aphids in population cages in the absence of parasitism indicate a probable cost to infection and may explain why Hamiltonella remains at intermediate frequencies in natural populations.  相似文献   

13.
1. Facultative endosymbiotic bacteria of insects are known to affect life‐history traits of their hosts, and can provide important fitness benefits under certain environmental conditions. While several distinct endosymbiont‐induced effects have been reported, there is no data on whether heritable facultative endosymbionts in any species affect their hosts' performance at low temperatures, something that could have a major effect on insect physiology and survival, and thus population structure and distribution. 2. The original facultative endosymbionts were experimentally removed from five clonal genotypes of the grain aphid, Sitobion avenae Fab., which were then exposed to frost. 3. Aphid genotypes differed considerably in survival following the exposure and in fecundity of the survivors. However, the presence of the facultative symbionts had no overall effect on the studied traits. 4. The results suggest that the facultative symbionts have limited effects on the cold hardiness of their grain aphid hosts.  相似文献   

14.
The host specificity of insect parasitoids and herbivores is thought to be shaped by a suite of traits that mediate host acceptance and host suitability. We conducted laboratory experiments to identify mechanisms shaping the host specificity of the aphid parasitoid Binodoxys communis. Twenty species of aphids were exposed to B. communis females in microcosms, and detailed observations and rearing studies of 15 of these species were done to determine whether patterns of host use resulted from variation in factors such as host acceptance or variation in host suitability. Six species of aphids exposed to B. communis showed no signs of parasitism. Four of these species were not recognized as hosts and two effectively defended themselves from attack by B. communis. Other aphid species into which parasitoids laid eggs had low suitability as hosts. Parasitoid mortality occurred in the egg or early larval stages for some of these hosts but for others it occurred in late larval stages. Two hypotheses explaining low suitability were investigated in separate experiments: the presence of endosymbiotic bacteria conferring resistance to parasitoids, and aphids feeding on toxic plants. An association between resistance and endosymbiont infection was found in one species (Aphis craccivora), and evidence for the toxic plant hypothesis was found for the milkweed aphids Aphis asclepiadis and Aphis nerii. This research highlights the multifaceted nature of factors determining host specificity in parasitoids.  相似文献   

15.
Resistance to endoparasitoids in aphids involves complex interactions between insect and microbial players. It is now generally accepted that the facultative bacterial symbiont Hamiltonella defensa of the pea aphid Acyrthosiphon pisum is implicated in its resistance to the parasitoid Aphidius ervi. It has also been shown that heat negatively affects pea aphid resistance, suggesting the thermosensitivity of its defensive symbiosis. Here we examined the effects of heat and UV-B on the resistance of A. pisum to A. ervi and we relate its stability under heat stress to different facultative bacterial symbionts hosted by the aphid. For six A. pisum clones harboring four different facultative symbiont associations, the impact of heat and UV-B was measured on their ability to resist A. ervi parasitism under controlled conditions. The results revealed that temperature strongly affected resistance, while UV-B did not. As previously shown, highly resistant A. pisum clones singly infected with H. defensa became more susceptible to parasitism after exposure to heat. Interestingly, clones that were superinfected with H. defensa in association with a newly discovered facultative symbiont, referred to as PAXS (pea aphid X-type symbiont), not only remained highly resistant under heat stress, but also expressed previously unknown, very precocious resistance to A. ervi compared to clones with H. defensa alone. The prevalence of dual symbiosis involving PAXS and H. defensa in local aphid populations suggests its importance in protecting aphid immunity to parasitoids under abiotic stress.  相似文献   

16.
Multiple endosymbionts commonly coexist in the same host insects. In order to gain an understanding of the biological roles of the individual symbionts in such complex systems, experimental techniques for enabling the selective removal of a specific symbiont from the host are of great importance. By using the pea aphid-Buchnera-Serratia endosymbiotic system as a model, the efficacy, generality, and fitness consequences of selective elimination techniques at various antibiotic doses and under a variety of host genotypes were investigated. In all the disymbiotic aphid strains examined, the facultative symbiont Serratia was selectively eliminated by ampicillin treatment in a dose-dependent manner, suggesting a generality of the elimination technique irrespective of host genotype. However, fitness consequences of the Serratia elimination differed between the aphid strains, indicating substantial effects of host genotype. In all the disymbiotic aphid strains, the obligate symbiont Buchnera was selectively eliminated by rifampicin treatment irrespective of the antibiotic dose. However, the survival and reproduction of the Buchnera-free aphids varied in a dose-dependent manner, and the dose dependence was strikingly different between the aphid genotypes. These results provide a basis for the development of new protocols for manipulating insect endosymbiotic microbiota.  相似文献   

17.
The importance of microbial facultative endosymbionts to insects is increasingly being recognized, but our understanding of how the fitness effects of infection are distributed across symbiont taxa is limited. In the pea aphid, some of the seven known species of facultative symbionts influence their host's resistance to natural enemies, including parasitoid wasps and a pathogenic fungus. Here we show that protection against this entomopathogen, Pandora neoaphidis, can be conferred by strains of four distantly related symbionts (in the genera Regiella, Rickettsia, Rickettsiella and Spiroplasma). They reduce mortality and also decrease fungal sporulation on dead aphids which may help protect nearby genetically identical insects. Pea aphids thus obtain protection from natural enemies through association with a wider range of microbial associates than has previously been thought. Providing resistance against natural enemies appears to be a particularly common way for facultative endosymbionts to increase in frequency within host populations.  相似文献   

18.
1. The value of protective mutualisms provided by some facultative endosymbionts has been well demonstrated in the laboratory, yet only recently has their effectiveness in the field been studied. ‘Candidatus Hamiltonella defensa’ is known to defend aphids from parasitoid wasps in laboratory trials. However, the efficacy of this defence varies among parasitoids, suggesting that protection will vary spatially and temporally depending on parasitoid community composition. 2. This demonstrated specificity and a dearth of studies on Hamiltonella in the field prompted the authors to quantify parasitism rates of Hamiltonella‐infected and ‐uninfected Aphis craccivora Koch aphid colonies in a manipulative field study. 3. It was found that A. craccivora in central Kentucky alfalfa were parasitised by Lysiphlebus testaceipes (Cresson) and Aphelinus sp. Surprisingly, Hamiltonella infection did not lower successful parasitism by the naturally occurring parasitoid wasps. Whether Hamiltonella was effective against L. testaceipes was subsequently tested in a controlled laboratory assay, and no effect on parasitism rate was found. 4. This study emphasises the fact that defensive symbionts sometimes provide no tangible defensive benefits under field conditions, depending on parasitoid community composition. It is hypothesised that the protective mutualism may be beneficial in geographically localised areas. When the symbiosis is effective against a local parasitoid community, aphid clones may experience eruptive population growth and rapidly disperse across a large area, allowing spread to habitats with different parasitoid communities where the mutualism is an ineffective defence.  相似文献   

19.
《Journal of Asia》2021,24(3):788-797
Bacterial symbionts in aphids are known to benefit the insect host and associated with aphid’s ecological adaptation. The pea aphid (Acyrthosiphon pisum), an important legume pest worldwide, carries at least eight endosymbionts, providing a model system to study insect–bacteria interactions. However, species diversity and geographic variations of endosymbionts are unknown in Chinese populations; therefore, we characterized symbiont communities and diversity of 27 pea aphid samples from 13 geographic populations of China. Via amplicon high-throughput sequencing and diagnostic PCR, we found that bacterial communities of Chinese populations were dominated by Proteobacteria and Firmicutes. Among eight known endosymbionts, five (Buchnera, Serratia, Hamiltonella, Regiella, and Rickettsia) were detected by both methods, with a specific geographical distribution. The obligate symbiont, Buchnera, was present in all aphid samples, while the four facultative symbionts showed a significant geographic variation. Each population was randomly infected with distinct endosymbionts, ranging from three to five species. Serratia and Rickettsia showed relatively higher abundance in central regions of China, Regiella was predominant in eastern and western China, whereas Hamiltonella showed an extremely low abundance and was absent in four populations. Samples grouped by altitudes showed a significant diversity difference, whereas there was no significant difference between red and green body colors. Bacterial community structures of the Chinese pea aphid populations were mainly influenced by environmental factors, other than body colors. These data can guide the development of potential biocontrol techniques against this aphid.  相似文献   

20.
Aphids harbour both an obligate bacterial symbiont, Buchnera aphidicola, and a wide range of facultative ones. Facultative symbionts can modify morphological, developmental and physiological host traits that favour their spread within aphid populations. We experimentally investigated the idea that symbionts may also modify aphid behavioural traits to enhance their transmission. Aphids exhibit many behavioural defences against enemies. Despite their benefits, these behaviours have some associated costs leading to reduction in aphid reproduction. Some aphid individuals harbour a facultative symbiont Hamiltonella defensa that provides protection against parasitoids. By analysing aphid behaviours in the presence of parasitoids, we showed that aphids infected with H. defensa exhibited reduced aggressiveness and escape reactions compared with uninfected aphids. The aphid and the symbiont have both benefited from these behavioural changes: both partners reduced the fitness decrements associated with the behavioural defences. Such symbiont-induced changes of behavioural defences may have consequences for coevolutionary processes between host organisms and their enemies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号