首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animal collective behaviors give rise to various spatial patterns, such as the nests of social insects. These structures are built by individuals following a simple set of rules, slightly varying within and among species, to produce a large diversity of shapes. However, little is known about the origin and evolution of the behavioral mechanisms regulating nest structures. In this study, we discuss the perspective of inferring the evolution of collective behaviors behind pattern formations using a phylogenetic framework. We review the collective behaviors that can be described by a single set of behavioral rules, and for which variations of the environmental and behavioral parameter values produce diverse patterns. We propose that this mechanism could be at the origin of the pattern diversity observed among related species, and that, when they are placed in the proper conditions, species have the behavioral potential to form patterns observed in related species. The comparative analysis of shelter tube construction by lower termites is consistent with this hypothesis. Although the use of shelter tubes in natural conditions is variable among species, most modern species have the potential to build them, suggesting that the behavioral rules for shelter tube construction evolved once in the common ancestor of modern termites. Our study emphasizes that comparative studies of behavioral rules have the potential to shed light on the evolution of collective behaviors.  相似文献   

2.
I Amaya  O J Ratcliffe    D J Bradley 《The Plant cell》1999,11(8):1405-1418
Plant species exhibit two primary forms of flowering architecture, namely, indeterminate and determinate. Antirrhinum is an indeterminate species in which shoots grow indefinitely and only generate flowers from their periphery. Tobacco is a determinate species in which shoot meristems terminate by converting to a flower. We show that tobacco is responsive to the CENTRORADIALIS (CEN) gene, which is required for indeterminate growth of the shoot meristem in Antirrhinum. Tobacco plants overexpressing CEN have an extended vegetative phase, delaying the switch to flowering. Therefore, CEN defines a conserved system controlling shoot meristem identity and plant architecture in diverse species. To understand the underlying basis for differences between determinate and indeterminate architectures, we isolated CEN-like genes from tobacco (CET genes). In tobacco, the CET genes most similar to CEN are not expressed in the main shoot meristem; their expression is restricted to vegetative axillary meristems. As vegetative meristems develop into flowering shoots, CET genes are downregulated as floral meristem identity genes are upregulated. Our results suggest a general model for tobacco, Antirrhinum, and Arabidopsis, whereby the complementary expression patterns of CEN-like genes and floral meristem identity genes underlie different plant architectures.  相似文献   

3.
Spatiotemporal patterns often emerge from local interactions in a self-organizing fashion. In biology, the resulting patterns are also subject to the influence of the systematic differences between the system’s constituents (biological variability). This regulation of spatiotemporal patterns by biological variability is the topic of our review. We discuss several examples of correlations between cell properties and the self-organized spatiotemporal patterns, together with their relevance for biology. Our guiding, illustrative example will be spiral waves of cAMP in a colony of Dictyostelium discoideum cells. Analogous processes take place in diverse situations (such as cardiac tissue, where spiral waves occur in potentially fatal ventricular fibrillation) so a deeper understanding of this additional layer of self-organized pattern formation would be beneficial to a wide range of applications. One of the most striking differences between pattern-forming systems in physics or chemistry and those in biology is the potential importance of variability. In the former, system components are essentially identical with random fluctuations determining the details of the self-organization process and the resulting patterns. In biology, due to variability, the properties of potentially very few cells can have a driving influence on the resulting asymptotic collective state of the colony. Variability is one means of implementing a few-element control on the collective mode. Regulatory architectures, parameters of signaling cascades, and properties of structure formation processes can be "reverse-engineered" from observed spatiotemporal patterns, as different types of regulation and forms of interactions between the constituents can lead to markedly different correlations. The power of this biology-inspired view of pattern formation lies in building a bridge between two scales: the patterns as a collective state of a very large number of cells on the one hand, and the internal parameters of the single cells on the other.  相似文献   

4.
Mitochondrial genome diversity in closely related species provides an excellent platform for investigation of chromosome architecture and its evolution by means of comparative genomics. In this study, we determined the complete mitochondrial DNA sequences of eight Candida species and analyzed their molecular architectures. Our survey revealed a puzzling variability of genome architecture, including circular- and linear-mapping and multipartite linear forms. We propose that the arrangement of large inverted repeats identified in these genomes plays a crucial role in alterations of their molecular architectures. In specific arrangements, the inverted repeats appear to function as resolution elements, allowing genome conversion among different topologies, eventually leading to genome fragmentation into multiple linear DNA molecules. We suggest that molecular transactions generating linear mitochondrial DNA molecules with defined telomeric structures may parallel the evolutionary emergence of linear chromosomes and multipartite genomes in general and may provide clues for the origin of telomeres and pathways implicated in their maintenance.  相似文献   

5.
Many ant species excavate nests that are made up of chambers and interconnecting tunnels. There is a general trend of an increase in nest complexity with increasing population size. This complexity reflects a higher ramification and anastomosis of tunnels that can be estimated by the meshedness coefficient of the tunnelling networks. It has long been observed that meshedness increases with colony size within and across species, but no explanation has been provided so far. Since colony size is a strong factor controlling collective digging, a high value of the meshedness could simply be a side effect of a larger number of workers. To test this hypothesis, we study the digging dynamics in different group size of ants Messor sancta. We build a model of collective digging that is calibrated from the experimental data. Model''s predictions successfully reproduce the topological properties of tunnelling networks observed in experiments, including the increase of the meshedness with group size. We then use the model to investigate situations in which collective digging progresses outward from a centre corresponding to the way tunnelling behaviour occurs in field conditions. Our model predicts that, when all other parameters are kept constant, an increase of the number of workers leads to a higher value of the meshedness and a transition from tree-like structures to highly meshed networks. Therefore we conclude that colony size is a key factor determining tunnelling network complexity in ant colonies.  相似文献   

6.
In the ant species Tetramorium caespitum, communication and foraging patterns rely on group-mass recruitment. Scouts having discovered food recruit nestmates and behave as leaders by guiding groups of recruits to the food location. After a while, a mass recruitment takes place in which foragers follow a chemical trail. Since group recruitment is crucial to the whole foraging process, we investigated whether food characteristics induce a tuning of recruiting stimuli by leaders that act upon the dynamics and size of recruited groups. High sucrose concentration triggers the exit of a higher number of groups that contain twice as many ants and reach the food source twice as fast than towards a weakly concentrated one. Similar trends were found depending on food accessibility: for a cut mealworm, accessibility to haemolymph results in a faster formation of larger groups than for an entire mealworm. These data provide the background for developing a stochastic model accounting for exploitation patterns by group-mass recruiting species. This model demonstrates how the modulations performed by leaders drive the colony to select the most profitable food source among several ones. Our results highlight how a minority of individuals can influence collective decisions in societies based on a distributed leadership.  相似文献   

7.
Members of Cnidaria Medusozoa are known for their wide morphological variation, which is expressed on many different levels, especially in different phases of the life cycle. Difficulties in interpreting morphological variations have posed many taxonomic problems, since intraspecific morphological variations are often misinterpreted as interspecific variations and vice-versa, hampering species delimitation. This study reviews the patterns of morphological variation in the Medusozoa, to evaluate how different interpretations of the levels of variation may influence the understanding of the patterns of diversification in the group. Additionally, we provide an estimate of the cryptic diversity in the Hydrozoa, based on COI sequences deposited in GenBank. Morphological variations frequently overlap between microevolutionary and macroevolutionary scales, contributing to misinterpretations of the different levels of variation. In addition, most of the cryptic diversity described so far for the Medusozoa is a result of previously overlooked morphological differences, and there is still great potential for discovering cryptic lineages in the Hydrozoa. We provide evidence that the number of species in the Medusozoa is misestimated and emphasize the necessity of examining different levels of morphological variations when studying species boundaries, in order to avoid generalizations and misinterpretations of morphological characters.  相似文献   

8.
Observations about the number, frequency, effect size, and genomic distribution of alleles associated with complex traits must be interpreted in light of evolutionary process. These characteristics, which constitute a trait’s genetic architecture, can dramatically affect evolutionary outcomes in applications from agriculture to medicine, and can provide a window into how evolution works. Here, I review theoretical predictions about the evolution of genetic architecture under spatially homogeneous, global adaptation as compared with spatially heterogeneous, local adaptation. Due to the tension between divergent selection and migration, local adaptation can favor “concentrated” genetic architectures that are enriched for alleles of larger effect, clustered in a smaller number of genomic regions, relative to expectations under global adaptation. However, the evolution of such architectures may be limited by many factors, including the genotypic redundancy of the trait, mutation rate, and temporal variability of environment. I review the circumstances in which predictions differ for global vs local adaptation and discuss where progress can be made in testing hypotheses using data from natural populations and lab experiments. As the field of comparative population genomics expands in scope, differences in architecture among traits and species will provide insights into how evolution works, and such differences must be interpreted in light of which kind of selection has been operating.  相似文献   

9.
Understanding the dynamics behind domain architecture evolution is of great importance to unravel the functions of proteins. Complex architectures have been created throughout evolution by rearrangement and duplication events. An interesting question is how many times a particular architecture has been created, a form of convergent evolution or domain architecture reinvention. Previous studies have approached this issue by comparing architectures found in different species. We wanted to achieve a finer-grained analysis by reconstructing protein architectures on complete domain trees. The prevalence of domain architecture reinvention in 96 genomes was investigated with a novel domain tree-based method that uses maximum parsimony for inferring ancestral protein architectures. Domain architectures were taken from Pfam. To ensure robustness, we applied the method to bootstrap trees and only considered results with strong statistical support. We detected multiple origins for 12.4% of the scored architectures. In a much smaller data set, the subset of completely domain-assigned proteins, the figure was 5.6%. These results indicate that domain architecture reinvention is a much more common phenomenon than previously thought. We also determined which domains are most frequent in multiply created architectures and assessed whether specific functions could be attributed to them. However, no strong functional bias was found in architectures with multiple origins.  相似文献   

10.
染色质在细胞核内的缠绕、折叠及其在细胞核内的空间排布是真核生物染色质构型的主要特征。在经典DNA探针荧光原位杂交显微观察的基础上,基于新一代测序技术的Hi-C及ChIA-PET染色质构型捕获技术已经被广泛应用于动物及植物细胞核染色质构型的研究中,并以新的角度定义了包括:染色体(质)域(chromosome territory)、A/B染色质区室(compartment A/B)、拓扑偶联结构域(topological associated domains,TADs)、染色质环(chromatin loops)等在内的多个更为精细的染色质构型。利用以上两种主流技术,越来越多的植物物种染色质构型特征被鉴定、分析和比较。本文系统分析和总结了近年来以植物细胞为模型的细胞核染色构型领域取得的重要成果,包括各级染色质构型特征的组成、建立机制和主要影响因素等。在此基础上,分析了目前研究植物染色质构型技术的瓶颈和突破性的技术进展,并对后续研究主要关注的问题和研究内容进行了展望,以期为相关领域的研究提供更多的理论参考和依据。  相似文献   

11.
The understanding of neural activity patterns is fundamentally linked to an understanding of how the brain''s network architecture shapes dynamical processes. Established approaches rely mostly on deviations of a given network from certain classes of random graphs. Hypotheses about the supposed role of prominent topological features (for instance, the roles of modularity, network motifs or hierarchical network organization) are derived from these deviations. An alternative strategy could be to study deviations of network architectures from regular graphs (rings and lattices) and consider the implications of such deviations for self-organized dynamic patterns on the network. Following this strategy, we draw on the theory of spatio-temporal pattern formation and propose a novel perspective for analysing dynamics on networks, by evaluating how the self-organized dynamics are confined by network architecture to a small set of permissible collective states. In particular, we discuss the role of prominent topological features of brain connectivity, such as hubs, modules and hierarchy, in shaping activity patterns. We illustrate the notion of network-guided pattern formation with numerical simulations and outline how it can facilitate the understanding of neural dynamics.  相似文献   

12.
Neotropical swarm-founding wasps build nests enclosed in a covering envelope, which makes it difficult to count individual births and deaths. Thus, knowledge of worker demography is very limited for swarm-founding species compared with that for independent-founding species. In this study, we explored the worker demography of the swarm-founding wasp Polybia paulista, the colony size of which usually exceeds several thousand adults. We considered each wasp colony as an open-population and estimated the survival probability, recruitment rate, and population size of workers using the developments of the Cormack–Jolly–Seber model. We found that capture probability varied considerably among the workers, probably due to age polyethism and/or task specialization. The daily survival rate of workers was high (around 0.97) throughout the season and was not related to the phase of colony development. On the other hand, the recruitment rate ranged from 0 to 0.37, suggesting that worker production was substantially less important than worker survival in determining worker population fluctuations. When we compared survival rates among worker groups of one colony, the mean daily survival rate was lower for founding workers than for progeny workers and tended to be higher in progeny workers that emerged in winter. These differences in survivorship patterns among worker cohorts would be related to worker foraging activity and/or level of parasitism.  相似文献   

13.
Animals living in groups make movement decisions that depend, among other factors, on social interactions with other group members. Our present understanding of social rules in animal collectives is mainly based on empirical fits to observations, with less emphasis in obtaining first-principles approaches that allow their derivation. Here we show that patterns of collective decisions can be derived from the basic ability of animals to make probabilistic estimations in the presence of uncertainty. We build a decision-making model with two stages: Bayesian estimation and probabilistic matching. In the first stage, each animal makes a Bayesian estimation of which behavior is best to perform taking into account personal information about the environment and social information collected by observing the behaviors of other animals. In the probability matching stage, each animal chooses a behavior with a probability equal to the Bayesian-estimated probability that this behavior is the most appropriate one. This model derives very simple rules of interaction in animal collectives that depend only on two types of reliability parameters, one that each animal assigns to the other animals and another given by the quality of the non-social information. We test our model by obtaining theoretically a rich set of observed collective patterns of decisions in three-spined sticklebacks, Gasterosteus aculeatus, a shoaling fish species. The quantitative link shown between probabilistic estimation and collective rules of behavior allows a better contact with other fields such as foraging, mate selection, neurobiology and psychology, and gives predictions for experiments directly testing the relationship between estimation and collective behavior.  相似文献   

14.
Although the Ephemeroptera have been studied over a long period of time, there are still few studies on the morphology of male reproductive system. The spermatic ducts are considered conserved among different Ephemeroptera groups. However, previous studies distinguished different organizational patterns of the spermatic duct intrinsic musculature. This study describes the morphology of the spermatic ducts, especially their musculature, in six species of Ephemeroptera, representing five families. We have observed variations in the organizational pattern of the spermatic ducts, even between species from the same family. Moreover, all species studied had intrinsic musculature in the spermatic ducts although with different organizational patterns. Thus, we believe that this musculature is important to move the spermatozoa along the ducts of all Ephemeroptera and not only of those with aflagellated spermatozoa (Leptophlebiidae). The variations in musculature organization must be related to differences in reproductive physiology (i.e., copula duration) and not only with spermatozoa characteristics.  相似文献   

15.
Clonal architecture is involved in performance of clonal fragments, as it determines spatial distribution of ramets. It is expected to rely on the species-specific expression of several architectural traits (structural blue-print). However, in contrasting environments, realized clonal architectures may differ, due to phenotypic plasticity. In this paper, we compared clonal architectures between two rhizomatous ecologically close Cyperaceae (Carex divisa and Eleocharis palustris) in non-defoliated and defoliated conditions. Two questions were addressed. (1) How much do the structural blue-print and resulting colonization and occupation of space differ between both species? (2) Does the structural blue-print constrain plastic responses of clonal architecture to defoliation? Traits related to performance, spatial pattern, architecture and biomass allocation of clonal fragments were monitored through an original non-destructive mapping method. In non-defoliated conditions, both species showed similar biomass but contrasting architectures and patterns of biomass allocation to rhizomes that resulted in different spatial patterns. The rhizome network of C. divisa, which consisted in only two primary rhizomes but several branches, was involved in resource storage rather than in spatial colonization. Conversely, E. palustris produced on average six primary rhizomes that grew in the whole horizontal plane, maximizing both occupation and colonization of space. These differences in structural constraints coupled with allometric relationships, resulted in differential responses to defoliation. In C. divisa, the costs associated to defoliation caused a decrease in branching, limiting the area occupied and number of ramets produced by clonal fragments, but increasing ramet density. Conversely, the weakly branched rhizome network of E. palustris was not affected by defoliation. Both spatial strategies (consolidation vs. colonization) are likely to provide ecological advantages allowing their coexistence in grazed meadows.  相似文献   

16.
We demonstrate here the development of a non-invasive optical forward-scattering system, called 'scatterometer' for rapid identification of bacterial colonies. The system is based on the concept that variations in refractive indices and size, relative to the arrangement of cells in bacterial colonies growing on a semi-solid agar surface will generate different forward-scattering patterns. A 1.2-1.5mm colony size for a 1mm laser beam and brain heart infusion agar as substrate were used as fixed variables. The current study is focused on exploring identification of Listeria monocytogenes and other Listeria species exploiting the known differences in their phenotypic characters. Using diffraction theory, we could model the scattering patterns and explain the appearance of radial spokes and the rings seen in the scattering images of L. monocytogenes. Further, we have also demonstrated development of a suitable software for the extraction of the features (scalar values) calculated from images of the scattering patterns using Zernike moment invariants and principal component analysis and were grouped using K-means clustering. We achieved 91-100% accuracy in detecting different species. It was also observed that substrate variations affect the scattering patterns of Listeria. Finally, a database was constructed based on the scattering patterns from 108 different strains belonging to six species of Listeria. The overall system proved to be simple, non-invasive and virtually reagent-less and has the potential for automated user-friendly application for detection and differentiation of L. monocytogenes and other Listeria species colonies grown on agar plates within 5-10 min analysis time.  相似文献   

17.
采用光学显微镜和体视镜,对兰属5种植物(春兰、蕙兰、建兰、寒兰、墨兰)的叶结构特征(叶脉结构、叶表皮结构、解剖结构)进行了观察和测量。结果显示,兰属5种植物的叶脉结构相似,叶表皮结构和解剖结构存在较大差异,其中最主要的差异是皮下纤维束的多少和边缘角质层锯齿形态。依据叶结构特征聚类分析结果,5种兰可分为春兰组、建兰组和墨兰组3组。本研究表明叶结构特征对兰属5种植物的分类具有重要意义。  相似文献   

18.
African mole rats (Bathyergidae) offer an excellent system with which to test theories relating to the evolution and maintenance of sociality in mammals. The aridity food distribution hypothesis (AFDH) suggests that, within the bathyergids, sociality has evolved in response to patterns of rainfall, its effects on food distribution, and the subsequent costs and risks of foraging and dispersal. Here, in the first detailed study of burrow architecture in a social mole-rat species, with data from 32 burrows, we show that in the giant mole-rat Fukomys mechowii burrow fractal dimension increases with colony size and is higher during the rainy season than during the dry season. The mass of food in the burrow increases with fractal dimension and is higher during the rainy season than during the dry season. These results link for the first time colony size, burrow architecture, rainfall and foraging success and provide support for two assumptions of the AFDH, namely that (1) in arid conditions burrowing may be severely constrained by the high costs of digging; and (2) the potential risks of failing to locate food may be mitigated by increases in colony size.  相似文献   

19.
Perdikis D  Huys R  Jirsa V 《PloS one》2011,6(2):e16589
The idea that complex motor, perceptual, and cognitive behaviors are composed of smaller units, which are somehow brought into a meaningful relation, permeates the biological and life sciences. However, no principled framework defining the constituent elementary processes has been developed to this date. Consequently, functional configurations (or architectures) relating elementary processes and external influences are mostly piecemeal formulations suitable to particular instances only. Here, we develop a general dynamical framework for distinct functional architectures characterized by the time-scale separation of their constituents and evaluate their efficiency. Thereto, we build on the (phase) flow of a system, which prescribes the temporal evolution of its state variables. The phase flow topology allows for the unambiguous classification of qualitatively distinct processes, which we consider to represent the functional units or modes within the dynamical architecture. Using the example of a composite movement we illustrate how different architectures can be characterized by their degree of time scale separation between the internal elements of the architecture (i.e. the functional modes) and external interventions. We reveal a tradeoff of the interactions between internal and external influences, which offers a theoretical justification for the efficient composition of complex processes out of non-trivial elementary processes or functional modes.  相似文献   

20.
In the context of social foraging, predator detection has been the subject of numerous studies, which acknowledge the adaptive response of the individual to the trade-off between feeding and vigilance. Typically, animals gain energy by increasing their feeding time and decreasing their vigilance effort with increasing group size, without increasing their risk of predation ('group size effect'). Research on the biological utility of vigilance has prevailed over considerations of the mechanistic rules that link individual decisions to group behavior. With sheep as a model species, we identified how the behaviors of conspecifics affect the individual decisions to switch activity. We highlight a simple mechanism whereby the group size effect on collective vigilance dynamics is shaped by two key features: the magnitude of social amplification and intrinsic differences between foraging and scanning bout durations. Our results highlight a positive correlation between the duration of scanning and foraging bouts at the level of the group. This finding reveals the existence of groups with high and low rates of transition between activities, suggesting individual variations in the transition rate, or 'tempo'. We present a mathematical model based on behavioral rules derived from experiments. Our theoretical predictions show that the system is robust in respect to variations in the propensity to imitate scanning and foraging, yet flexible in respect to differences in the duration of activity bouts. The model shows how individual decisions contribute to collective behavior patterns and how the group, in turn, facilitates individual-level adaptive responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号