首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cadmium accumulation, the relative content of different chemical forms of Cd, as well as the toxic effect of Cd on nutrient element uptake, physiological parameters, and ultrastructure of Sagittaria sagittifolia L. seedlings were determined after the seedlings were exposed to different Cd concentrations for 4 days. The results showed that S. sagittifolia had the ability to accumulate large amounts of Cd. In the root, stem, and bulb, the predominant chemical Cd forms were NaCl extractable. With an increase in the Cd2+ concentration, the chlorophyll content, the relative membrane penetrability (RMP) of root cells, peroxidase (POD) activity, superoxide dismutase (SOD) activity in leaves, malondiadehyde (MDA) content and the superoxide anion (O2) generation rate in roots all decreased following an initial increase. On the other hand, catalase (CAT) activity, SOD activity in roots, MDA content, and the generation rate of O2 in leaves all increased gradually. The toxic effect of Cd2+ was more severe on roots than on leaves at the same concentration. Cadmium affected the mineral nutrition balance; mainly, it promoted the uptake of Ca, Cu, Mn, and Fe, while inhibited Mg, Na, and K uptake. The physiological toxic effect of Cd2+ was close to the ultrastructural damage induced by Cd contamination. A significant correspondence was observed between the Cd dose and its toxic effect. Cadmium could destroy the normal ultrastructure, disturb the ion balance, and interfere with cell metabolism.  相似文献   

2.
Ranunculus flabellaris Rafin., an aquatic buttercup, exhibitsheterophylly at the level of cellular ultrastructure. Comparedto terrestrial leaves, underwater leaves have thinner epidermalcell walls and more numerous paramural bodies per epidermaland mesophyll cell cross-section. The number of chloroplastsand mitochondria in cell cross-sections also contrasts betweenthe two leaf types. Despite within-and between-leaf variations,different patterns of organelle distribution for the two leafforms were found using principal coordinates analysis. In addition,underwater leaf chloroplasts are smaller, have fewer grana,a greater number of thylakoids/granum, and less starch comparedto chloroplasts from terrestrial leaves. At the ultrastructurallevel, submergence in ABA solution does not produce a leaf withas many characteristics of the terrestrial environment, as shownin previous studies of leaf morphology and anatomy. While numberand distribution of organelles in ABA-treated leaves are similarto terrestrial leaves, some features of chloroplast internalstructure and paramural body number and distribution resembleunderwater leaves. It is postulated that ABA acts as a morphogeninvolved in guiding the irreversible processes of leaf development,but certain subcellular characteristics may be determined directlyby the physical environment. Difficulties encountered in quantitativeanalyses of cellular ultrastructure are discussed. Ranunculus flabellaris, ABA, heterophylly, leaf ultrastructure, principal coordinates analysis  相似文献   

3.
We investigated morphological response of yellow water-lily and arrowhead to water velocity gradient in the lowland We?na river (Western Poland). Percentage cover of floating and submerged forms of yellow water-lily and arrowhead had been measured in randomly selected sites of 16 m2. We analyzed 62 stands of Nuphar lutea and 80 stands of Sagittaria sagittifolia using 13 environmental variables. Redundancy analysis (RDA), the Monte Carlo permutation test, ranges of chemical and hydrological data, Generalized Additive Models (GAMs) and transfer function were used to describe reaction of investigated species to water velocity. Among the analyzed parameters of microhabitats with the floating and submerged forms of investigated species, velocity, pH, water colour, hydration and organic matter in bottom sediments were statistically significant. In S. sagittifolia case, the velocity was the most important parameter, while in N. lutea — both velocity and content of organic matter in river substrate were statistically significant.  相似文献   

4.
The amphibious plant species Sagittaria sagittifolia and Ranunculus lingua here serve as model systems to study differences in leaf optical properties of different leaf types that develop in aquatic and terrestrial environments. We aimed to determine leaf traits that explain most of the variability in the reflectance and transmittance spectra in the range from 280 to 880 nm. Comparisons of leaves of the same form revealed marked differences in their structures and particularly in the content of total methanol-soluble UV-absorbing compounds. Submerged leaves transmit radiation over the whole range measured, but emerged leaves transmit only at wavelengths from 500 to 650 nm, and above 690 nm. Redundancy analysis shows that biochemical leaf traits, namely the UV-absorbing compounds chlorophyll a and b, together with the specific leaf area (SLA), significantly affect the reflectance spectra, explaining 60% of the spectra variability. Pigment levels negatively affect reflectance, while the effect of SLA is positive. Physical traits like thickness of the palisade mesophyll, SLA, and thickness of the lower and upper epidermis, along with anthocyanin content, explain 62% of the transmittance spectra variability. This study provides new insight into the understanding of data collected for aquatic and semi-aquatic plants based on spectral analyses.  相似文献   

5.
Sagittariol a new diterpene has been isolated from Sagittaria sagittifolia and characterized as labda-7,14-dien-13(S,17-diol.  相似文献   

6.
The paper summarizes hitherto known data concerning the biology and ecology ofSagittaria sagittifolia. The distribution of this species in Czechoslovakia was assessed on the basis of literature data, herbarium specimens and the authors’ own data. The occurrence of this species in plant communities is shown in tables from selected phytocoenological relevés. The chemical properties of the substratum in habitats ofSagittaria sagittifolia over all its distribution area in Czechoslovakia were studied and comparisons calculated by means of cluster analysis. Life cycle, seed production, germination and biomass production of this species were studied and compared with conditions in its habitats.  相似文献   

7.
The ultrastructure of mesophyll chloroplasts of maize (Zea mays L.) was more severely affected by iron deficiency that induced mild chlorosis than was the ultrastructure of bundle sheath plastids. Ferredoxin and ribulose diphosphate carboxylase levels were severely decreased by iron deficiency. Malic enzyme was less affected, and phosphoenolpyruvate carboxylase activity remained high even under severe iron deficiency. Iron deficient leaves fixed carbon into malic and aspartic acids but the rate of entrance of carbon into the sugar phosphates and sucrose was greatly reduced compared to the control. Chlorophyll a/b ratios ranged from low values of less than 2 in severely iron deficient leaves to high values exceeding 4 in leaves showing little iron deficiency.  相似文献   

8.
A hydroponic experiment was conducted to elucidate the difference in growth and cell ultrastructure between Tibetan wild and cultivated barley genotypes under moderate (150 mM NaCl) and high (300 mM NaCl) salt stress. The growth of three barley genotypes was reduced significantly under salt stress, but the wild barley XZ16 (tolerant) was less affected relative to cultivated barley Yerong (moderate tolerant) and Gairdner (sensitive). Meanwhile, XZ16 had lower Na+ and higher K+ concentrations in leaves than other two genotypes. In terms of photosynthetic and chlorophyll fluorescence parameters, salt stress reduced maximal photochemical efficiency (F v/F m), net photosynthetic rate (Pn), stomatal conductance (Gs), and intracellular CO2 concentration (Ci). XZ16 showed relatively smaller reduction in comparison with the two cultivated barley genotypes. The observation of transmission electron microscopy found that fundamental cell ultrastructure changes happened in both leaves and roots of all barley genotypes under salt NaCl stress, with chloroplasts being most changed. Moreover, obvious difference could be detected among the three genotypes in the damage of cell ultrastructure under salt stress, with XZ16 and Gairdner being least and most affected, respectively. It may be concluded that high salt tolerance in XZ16 is attributed to less Na+ accumulation and K+ reduction in leaves, more slight damage in cell ultrastructure, which in turn caused less influence on chloroplast function and photosynthesis.  相似文献   

9.
10.
Hydrothermal pretreatment was performed on the leaves and internodes portions of Alamo switchgrass, Panicum virgatum L., to enhance the digestibility of cellulose towards cellulase. It was observed that extractives free leaves portion provided 18.1% lower pretreatment gravimetrical yield and 33.8% greater cellulose-to-glucose yield than internodes portion. The degree of polymerization (DP) and ultrastructure of cellulose were determined by gel-permeation chromatography and solid-state cross polarization/magic angle spinning 13C NMR experiments. The results suggested that hydrothermal pretreatment hydrolyzed amorphous cellulose and yielded a product enriched in paracrystalline cellulose. Furthermore, the DP of cellulose was reduced to one third of the origin value after hydrothermal pretreatment. The resulting biomass after pretreatment for leaves and internodes has similar cellulose ultrastructure and chemical profiles. The results of the enzymatic hydrolysis studies of cellulose suggest that the reduced DP of cellulose of pretreated switchgrass was an important factor influencing the enhanced digestibility of pretreated switchgrass.  相似文献   

11.
The ultrastructure and functional characteristics of the photosynthetic apparatus of floating and submersed leaves of the heterophyllous plant Nuphar lutea (L.) Smith have been examined. Differences have been revealed in mesophyll cell chloroplasts, content of pigments, and chlorophyll fluorescence parameters between floating and submersed leaves and submersed leaves at different depths. A sharp decline in the PSII (photosystem II) efficiency of submersed leaves when exposed to an actinic light intensity of more than 60 ??mol m?2 s?1 has been noted. The described differences may be considered as an adaptation mechanism of submersed leaves to life in an aquatic environment with a reduced light intensity and changed light spectral composition.  相似文献   

12.
13.
The effects of 24-epibrassinolide (EBR) on chlorophyll fluorescence, leaf surface morphology and cellular ultrastructure of grape seedlings (Vitis vinifera L.) under water stress were investigated. The grape seedlings were subjected to 10 % (w/v) polyethylene glycol (PEG-6000) and treated with 0.05, 0.10 or 0.20 mg L?1 EBR, respectively. EBR application increased chlorophyll contents, the effective photochemical quantum yield of PSII, maximum photochemical efficiency of PSII, maximal fluorescence and non-photochemical quenching coefficient under water stress in each concentration. Compared with water stress control, higher stomatal density and stomatal length were observed in young leaves under EBR treatments, but not in mature leaves. In-depth analysis of the ultrastructure of leaves indicated that water stress induced disappearance of nucleus, chloroplast swelling, fractured mitochondrial cristae and disorder of thylakoid arrangement both in young leaves and mature leaves. However, EBR application counteracted the detrimental effects of water stress on the structure of the photosynthetic apparatus better in young leaves than in mature leaves. Compared to the other treatments, treatment of 0.10 mg L?1 EBR had best ameliorative effect against water stress. These results suggested that exogenous EBR could alleviate water stress-induced inhibition of photosynthesis on grape possibly through increasing chlorophyll content, lessening the stomatal and non-stomatal limitation of photosynthesis performance.  相似文献   

14.
15.
The gastropod T. palustris is one of the major species responsible for leaf consumption and degration within the Indo-Pacific mangrove forests, and it strongly competes with herbivorous sesarmid crabs in consuming fallen leaves. This snail feeds at high and low tides and it is able to locate food items by means of chemical cues. The aim of this study was to assess the food preferences of T. palustris and to define its feeding strategies at low and high tides, by conducting field trials on water-borne mediated food location at high tide, grazing rate and the chemical attraction exerted by different mangrove leaves. The results showed that T. palustris was able to perceive underwater grazed leaves. In addition, we demonstrated that T. palustris consumes all the mangrove species (preferentially the Rhizophoraceae leaves) but Xilocarpus granatum. Moreover, this snail is differentially attracted to different mangrove species: the major attractive power is wielded by the rhizophoracean species and Pemphis acidula, while X. granatum does not attract this snail at all. The efficacy and adaptive value of a chemically mediated food searching strategies is unquestionable since by using this ability T. palustris can locate and reach the leaves it preferentially consumes. Moreover, T. palustris is the only macrobenthic species of East Africa mangroves able to search, detect and consume mangrove leaves at both high and low tides. Such an expanded feeding window permits T. palustris to occupy temporal niches left empty by the sesarmid crabs.  相似文献   

16.
Chloroplasts isolated from powdery mildew-infected (Erysiphe polygoni DC) sugar beet leaves (Beta vulgaris L) showed a reduction in the rate of electron transport and in the accompanying ATP formation in noncyclic photophosphorylation (water as electron donor, NADP as electron acceptor) and little or no change in the rate of ATP formation in cyclic photophosphorylation catalyzed by phenazine methosulfate. The inhibition of noncyclic photophosphorylation appeared to lead in the parent leaves to a decreased rate of photosynthetic CO2 assimilation and a shift in products resulting in a relative increase of amino acids. These changes were accompanied by alterations in chloroplast ultrastructure and by a reduction in the activity of enzymes necessary for the formation of organic acids (phosphoenolpyruvate carboxylase and malate dehydrogenase). These results are similar to the findings of Montalbini and Buchanan (1974 Physiol. Plant Pathol. 4: 191-196) with chloroplasts from rust-infected Vicia faba leaves.  相似文献   

17.
Kawano N  Ito O  Sakagami J 《Annals of botany》2009,103(2):161-169

Background and Aims

Reducing damage to rice seedlings caused by flash flooding will improve the productivity of rainfed lowland rice in West Africa. Accordingly, the morphological and physiological responses of different forms of rice to complete submergence were examined in field and pot experiments to identify primary causes of damage.

Methods

To characterize the physiological responses, seedlings from a wide genetic base including Oryza sativa, O. glaberrima and interspecific hybrids were compared using principle component analysis.

Key Results

Important factors linked to flash-flood tolerance included minimal shoot elongation underwater, increase in dry matter weight during submergence and post-submergence resistance to lodging. In particular, fast shoot elongation during submergence negatively affected plant growth after de-submergence. Also shoot-elongating cultivars showed a strong negative correlation between dry matter weight of the leaves that developed before submergence and leaves developing during submergence.

Conclusions

Enhancement of shoot elongation during submergence in water that is too deep to permit re-emergence by small seedlings represents a futile escape strategy that takes place at the expense of existing dry matter in circumstances where underwater photosynthetic carbon fixation is negligible. Consequently, it compromises survival or recovery growth once flood water levels recede and plants are re-exposed to the aerial environment. Tolerance is greater in cultivars where acceleration of elongation caused by submergence is minimal.Key words: Africa, flash floods, Oryza glaberrima, rainfed lowland, rice, shoot elongation, stress tolerance, submergence  相似文献   

18.
Pyrococcus furiosus is a hyperthermophilic archaeon. Its ribulose-1,5-bisphosphate carboxylase/oxygenase (PfRubisco) has only large subunit (L). PfRubisco has a novel (L2)5, decameric structure and it possesses higher carboxylase activity and thermotolerance. To assess the potential functionality of PfRubisco in higher plants under high-temperature stress, PfRubisco coding sequence was transiently expressed in Nicotiana benthamiana by Pea early browning virus mediated ectopic expression. The transgenic PfRubisco plants produced chlorotic yellow stripes in their leaves. Relative to the control leaves, those with yellow stripes exhibited decreased net photosynthetic rate and chlorophyll content, altered chloroplast ultrastructure, and more severe photoinhibition of both photosystem I and II. We concluded that the ectopic expression of PfRubisco might disrupt the chloroplast development and function in N. benthamiana. The potential cause of the disruption was discussed.  相似文献   

19.
Nectaries in leaves of Gentianaceae have been poorly studied. The present study aims to describe the distribution, anatomy, and ecological aspects of extrafloral nectaries (EFNs) of three Calolisianthus species and in particular the ultrastructure of EFNs in Calolisianthus speciosus during leaf development, discussing its unusual structure. Leaves of Calolisianthus species were fixed and processed by the usual methods for studies using light, scanning microscopy and transmission electron microscopy (TEM). Ion chromatography was used to analyze the nectar exudates of C. speciosus. The distribution patterns of nectar secretion units were analysed by ANOVA and t-tests. Two EFNs that can be seen macroscopically were observed at the bases of C. speciosus and C. pendulus leaves. Such large nectaries are absent there in C. amplissimus. Another similarly large EFN is observed at the apex of each leaf in all species. The EFNs at the base of the young leaves in C. speciosus are visited by ants during the rainy season. EFNs are formed by several nectar secretory units (nectarioles) that are present throughout the leaves. Each nectariole is formed by rosette cells with a central channel from which the nectar is released. Channels of old C. speciosus and C. pendulus EFNs were obstructed by fungi. TEM of EFNs in young leaves showed cytoplasms with secretion, small vacuoles, mitochondria, cell wall ingrowth, and plasmodesmata. TEM of EFNs in old leaves demonstrated dictyosomes, plastids, mitochondria, segments of endoplasmatic reticulum, and lipid droplets. The nectar contains sucrose, glucose and fructose.  相似文献   

20.
We examined the effects of artificial warming on physiological, biochemical, and structural changes in leaves of maize plants (Zea mays L.) with a field warming experiment in the North China Plain. Stomatal characters, leaf anatomy and ultrastructure, gas exchange, and carbohydrate and mineral nutrition concentrations were examined using light microscopy, electron microscopy, portable photosynthesis system (Licor-6400), and inductively coupled plasma atomic emission spectroscopy. We found that artificial warming (about 2 °C) increased both the stomatal index and stomatal size, and thus increased net photosynthesis rate (A), stomatal conductance (g s), and transpiration rate (E). Artificial warming also significantly increased the profile area of chloroplast and mitochondria, but decreased leaf width and thickness, mesophyll thickness, and mesophyll cell size (mainly palisade cell size). In addition, artificial warming also significantly increased the foliar C:N ratio and soluble sugar contents (glucose, fructose, and sucrose), but not the mineral nutrients and starch contents. Our findings suggest that future global warming may affect the maize growth and production in northern China due to the direct warming effects on the structures (anatomy and ultrastructure), biochemical properties and gas exchanges of the maize leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号