首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumour hypoxia plays a role in chemoresistance in several human tumours. However, how hyperbaric oxygen leads to chemotherapeutic gain is unclear. This study investigates the relation of reactive oxygen species (ROS) generation with anti-tumoural effect of adriamycin (ADR) on CCRF-CEM cells under hypoxic (2% O2) and normoxic (21% O2) conditions. A new method was used to measure intracellular ROS variations through the fluorescence lifetime of 1-pyrenebutyric acid. At 24 h, ADR, probably via semiquinone radical, enhances ROS levels in normoxic cells compared to hypoxic cells. Long-term studies show that ROS are also generated by a second mechanism related to cell functions perturbation. ADR arrests the cell cycle progression both under hypoxia and normoxia, indicating that oxygen and ROS does not influence the DNA damaging activity of ADR. The findings reveal that moderate improvement of ADR cytotoxicity results from higher ROS formation in normoxic cells, leading to elevated induction of cell death.  相似文献   

2.
3.
Endothelial cells are critical targets in both hypoxia-and reoxygenation-mediated lung injury. Reactive O2 species (ROS) have been implicated in the pathogenesis of hypoxic and reoxygenation lung injury, and xanthine dehydrogenase/oxidase (XDH/XO) is a major generator of the ROS. Porcine pulmonary artery endothelial cells (PAEC) have no detectable XDH/XO. This study was undertaken to examine (1) ROS production by hypoxic porcine PAEC and their mitochondria and (2) ROS production and injury in reoxygenated PAEC lacking XDH/XO activity. Intracellular H2O2 generation and extracellular H2O2 and O/2 release were measured after exposure to normoxia (room air-5% CO2), hypoxia (0% O2 -95% N-5% CO2), or hypoxia followed by normoxia or hyperoxia (95% O2-5% CO2). Exposure to hypoxia results in significant reductions in intracellular H2 O2 formation and extracellular release of H2 O2 and O2 by PAEC and mitochondria. The reductions occur with as little as a 2 h exposure and progress with continued exposure. During reoxygenation, cytotoxicity was not observed, and the production of ROS by PAEC and their mitochondria never exceeded levels observed in normoxic cells. The absence of XDH/XO may prevent porcine PAEC from developing injury and increased ROS production during reoxygenation. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Hypoxia in the tumor microenvironment triggers differential signaling pathways for tumor survival. In this study, we characterize the involvement of hypoxia and reactive oxygen species (ROS) generation in the antineoplastic mechanism of proopiomelanocortin (POMC) gene delivery in a mouse B16-F10 melanoma model in vivo and in vitro. Histological analysis revealed increased TUNEL-positive cells and enhanced hypoxic activities in melanoma treated with adenovirus encoding POMC (Ad-POMC) but not control vector. Because the apoptotic cells were detected mainly in regions distant from blood vessels, it was hypothesized that POMC therapy might render melanoma cells vulnerable to hypoxic insult. Using a hypoxic chamber or cobalt chloride (CoCl2), we showed that POMC gene delivery elicited apoptosis and caspase-3 activation in cultured B16-F10 cells only under hypoxic conditions. The apoptosis induced by POMC gene delivery was associated with elevated ROS generation in vitro and in vivo. Blocking ROS generation using the antioxidant N-acetyl-l-cysteine abolished the apoptosis and caspase-3 activities induced by POMC gene delivery and hypoxia. We further showed that POMC-derived melanocortins, including α-MSH, β-MSH, and ACTH, but not γ-MSH, contributed to POMC-induced apoptosis and ROS generation during hypoxia. To elucidate the source of ROS generation, application of the NADPH oxidase inhibitor diphenyleneiodonium attenuated α-MSH-induced apoptosis and ROS generation, implicating the proapoptotic role of NADPH oxidase in POMC action. Of the NADPH oxidase isoforms, only Nox4 was expressed in B16-F10 cells, and Nox4 was also elevated in Ad-POMC-treated melanoma tissues. Silencing Nox4 gene expression with Nox4 siRNA suppressed the stimulatory effect of α-MSH-induced ROS generation and cell apoptosis during hypoxia. In summary, we demonstrate that POMC gene delivery suppressed melanoma growth by inducing apoptosis, which was at least partly dependent on Nox4 upregulation.  相似文献   

5.
Adipose tissue hypoxia occurs early in obesity and is associated with increased tissue macrophages and systemic inflammation that impacts muscle insulin responsiveness. We investigated how hypoxia interacted with adipocyte-macrophage crosstalk and inflammatory cytokine release, using co-culture and conditioned media (CM). Murine primary adipocytes from lean or obese mice were cultured under normoxic (21% O2) or hypoxic (1% O2) conditions. RAW264.7 macrophages were incubated under normoxic or hypoxic conditions with or without adipocyte conditioned media. Macrophage and adipocyte-macrophage co-culture CM were also collected. We found hypoxia did not elicit direct cytokine release from macrophages. However, adipocyte CM or adipocyte co-culture, synergistically stimulated TNFα and MCP-1 release from macrophages that was not further impacted by hypoxia. Exposure of muscle cells to elevated cytokines led to reduced insulin and muscle stress/inflammatory signaling. We conclude hypoxia or obesity induces release of inflammatory TNFα and MCP-1 from mice primary adipocytes but the two environmental conditions do not synergize to worsen macrophage signal transduction or insulin responsiveness.  相似文献   

6.
This study was undertaken to evaluate whether chemical hypoxia-induced cell injury is a result of reactive oxygen species (ROS) generation, ATP depletion, mitochondrial permeability transition, and an increase in intracellular Ca2+, in A172 cells, a human glioma cell line. Chemical hypoxia was induced by incubating cells with antimycin A, an inhibitor of mitochondrial electron transport, in a glucose-free medium. Exposure of cells to chemical hypoxia resulted in cell death, ROS generation, ATP depletion, and mitochondrial permeability transition. The H2O2 scavenger pyruvate prevented cell death, ROS generation, and mitochondrial permeability transition induced by chemical hypoxia. In contrast, changes mediated by chemical hypoxia were not affected by hydroxyl radical scavengers. Antioxidants did not affect cell death and ATP depletion induced by chemical hypoxia, although they prevented ROS production and mitochondrial permeability transition induced by chemical hypoxia. Chemical hypoxia did not increase lipid peroxidation even when antimycin A was increased to 50 M, whereas the oxidant t-butylhydroperoxide caused a significant increase in lipid peroxidation, at a concentration that is less effective than chemical hypoxia in inducing cell death. Fructose protected against cell death and mitochondrial permeability transition induced by chemical hypoxia. However, ROS generation and ATP depletion were not prevented by fructose. Chemical hypoxia caused the early increase in intracellular Ca2+. The cell death and ROS generation induced by chemical hypoxia were altered by modulation of intracellular Ca2+ concentration with ruthenium red, TMB-8, and BAPTA/AM. However, mitochondrial permeability transition was not affected by these compounds. These results indicate that chemical hypoxia causes cell death, which may be, in part, mediated by H2O2 generation via a lipid peroxidation-independent mechanism and elevated intracellular Ca2+. In addition, these data suggest that chemical hypoxia-induced cell death is not associated directly with ATP depletion and mitochondrial permeability transition.  相似文献   

7.
8.
The present study is designed to investigate the effect of pre-conditioning with 35% O2 on PC12 cell death induced by hypoxia. This study investigated whether 35% O2 pre-conditioning for 3 h, followed by 12 h recovery, can protect PC12 cells against death induced by subsequent exposure to hypoxia for 72 h. The result showed that pre-conditioning with 35% O2 partly blocked the decrease in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction induced by hypoxia in PC12 cells. PC12 cells pre-conditioned with 35% O2 could generate a small quantity of reactive oxygen species (ROS), which activated the extracellular signal-regulated kinase (ERK) signalling pathway, then the over-expression of the B-cell lymphoma/leukaemia-2 (Bcl-2) was induced, which subsequently protected PC12 cell against death resulting from hypoxia exposure. In conclusion, 35% O2 pre-conditioning could protect PC12 cells against hypoxic insult.  相似文献   

9.
In general, tumors cells that are resistant to apoptosis and increase angiogenesis are a result of the hypoxic responses contributing to the malignant phenotype. In this study, we developed a chronic hypoxic cell model (HMLL), by incubating the prostate cancer MatLyLu cells in a hypoxic chamber (1% O2) over 3 weeks. Surviving cells were selected through each cell passage and were grown in the hypoxic condition up to 8 weeks. This strategy resulted in survival of only 5% of the cells. The surviving hypoxic cells displayed a greater stimulation on hypoxic adaptive response, including a greater expression of glucose transporter1 (Glut1) and VEGF secretion. In addition, higher invasion activity was observed in the chronic hypoxic HMLL cells as compared to MatLyLu cells exposed to acute hypoxia (1% O2, 5 h) using the matrigel assay. To further examine the role of HIF-1α in tumor progression, both MatLyLu and HMLL cells were transfected with dominant-negative form of HIF-1α (DNHIF-1α). The Matrigel invasion activity induced by chronic hypoxia was significantly attenuated by DNHIF-1α. These results suggest that signaling pathways leading to hypoxic response may be differentially regulated in chronic hypoxic cells and acute hypoxic cells. Chronic hypoxia may play a greater role than acute hypoxia in promoting the aggressive phenotype of tumor cells. This observation mimics the clinical scenario where tumor cells following treatment with radiation are subjected to hypoxic conditions. The reemergence of tumor following treatment usually results in tumor cells that are more aggressive and metastatic.  相似文献   

10.
Oxygen (O2) is a substrate for energy production in the cell and is a rapid regulator of cellular metabolism. Recent studies have also implicated O2 and its signal transduction pathways in controlling cell proliferation, fate, and morphogenesis during the development of many tissues, including the nervous system. O2 tensions in the intact brain are much lower than in room air, and there is evidence that dynamic control of O2 availability may be a component of the in vivo neural stem cell (NSC) niche. At lower O2 tensions, hypoxia‐inducible factor 1α (HIF1α) facilitates signal transduction pathways that promote self‐renewal (e.g., Notch) and inhibits pathways that promote NSC differentiation or apoptosis (e.g., bone morphogenetic proteins). Increasing O2 tension degrades HIF1α, thus promoting differentiation or apoptosis of NSCs and progenitors. These dynamic changes in O2 tension can be mimicked to optimize ex vivo production methods for cell replacement therapies. Conversely, disrupted O2 availability may play a critical role in disease states such as stroke or brain tumor progression. Hypoxia during stroke activates precursor proliferation in vivo, while glioblastoma stem cells proliferate maximally in a more hypoxic environment than normal stem cells, which may make them resistant to certain anti‐neoplastic therapies. These findings suggest that O2 response is central to the normal architecture and dynamics of NSC regulation and in the etiology and treatment of brain diseases. J. Cell. Physiol. 220: 562–568, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
12.
Hsieh CH  Shyu WC  Chiang CY  Kuo JW  Shen WC  Liu RS 《PloS one》2011,6(9):e23945

Background

Cycling and chronic tumor hypoxia are involved in tumor development and growth. However, the impact of cycling hypoxia and its molecular mechanism on glioblastoma multiforme (GBM) progression remain unclear.

Methodology

Glioblastoma cell lines, GBM8401 and U87, and their xenografts were exposed to cycling hypoxic stress in vitro and in vivo. Reactive oxygen species (ROS) production in glioblastoma cells and xenografts was assayed by in vitro ROS analysis and in vivo molecular imaging studies. NADPH oxidase subunit 4 (Nox4) RNAi-knockdown technology was utilized to study the role of Nox4 in cycling hypoxia-mediated ROS production and tumor progression. Furthermore, glioblastoma cells were stably transfected with a retroviral vector bearing a dual reporter gene cassette that allowed for dynamic monitoring of HIF-1 signal transduction and tumor cell growth in vitro and in vivo, using optical and nuclear imaging. Tempol, an antioxidant compound, was used to investigate the impact of ROS on cycling hypoxia-mediated HIF-1 activation and tumor progression.

Principal Findings

Glioblastoma cells and xenografts were compared under cycling hypoxic and normoxic conditions; upregulation of NOX4 expression and ROS levels were observed under cycling hypoxia in glioblastoma cells and xenografts, concomitant with increased tumor cell growth in vitro and in vivo. However, knockdown of Nox4 inhibited these effects. Moreover, in vivo molecular imaging studies demonstrated that Tempol is a good antioxidant compound for inhibiting cycling hypoxia-mediated ROS production, HIF-1 activation, and tumor growth. Immunofluorescence imaging and flow cytometric analysis for NOX4, HIF-1 activation, and Hoechst 3342 in glioblastoma also revealed high localized NOX4 expression predominantly in potentially cycling hypoxic areas with HIF-1 activation and blood perfusion within the endogenous solid tumor microenvironment.

Conclusions

Cycling hypoxia-induced ROS via Nox4 is a critical aspect of cancer biology to consider for therapeutic targeting of cycling hypoxia-promoted HIF-1 activation and tumor progression in GBM.  相似文献   

13.
Epithelial–mesenchymal transition (EMT) is associated with pulmonary fibrosis, including idiopathic pulmonary fibrosis (IPF). In this study, we investigated EMT of human pulmonary epithelial-derived cells (A549). A549 cells was either cultured by itself or co-cultured with THP-1 macrophages under normoxic (21% O2) and hypoxic (2% O2) conditions. We evaluated the presence of EMT by determining the expression of EMT markers, E-cadherin, vimentin, and fibronectin. To determine the role of TGF-β1 and IL-1β in EMT of the A549 cells, we analyzed the effects of blocking their activity with TGF-β1 inhibitor or IL-1β neutralizing antibody respectively. The A549 cells presented EMT when they were co-cultured with THP-1 macrophages. The EMT of the A549 cells co-cultured with THP-1 macrophages was exacerbated under hypoxia. In addition, the EMT were prevented by the addition of TGF-β1 type I receptor kinase inhibitor. The hypoxic condition increased the mRNA levels of TGF-β1 in A549 cells and THP-1 macrophages and that of IL-1β in THP-1 macrophages when each cells were co-cultured. Anti-IL-1β neutralizing antibody attenuated TGF-β1 secretion in co-culture media under hypoxic conditions. Thus, the IL-1β from THP-1 macrophages up-regulated the TGF-β1 from A549 cells and THP-1 macrophages, and then the TGF-β1 from both cells induced and promoted the EMT of A549 cells when they were co-cultured under hypoxia. Together, these results demonstrate that the interaction between type II pneumocytes and macrophages under hypoxia is necessary for the development of pulmonary fibrosis.  相似文献   

14.
15.
Hepcidin plays a key role in regulating iron metabolism by blocking iron efflux from macrophages and enterocytes. Hepcidin is synthesized primarily in the liver, and its expression is increased by iron overload and inflammation. Obesity is associated with chronic inflammation as well as poor iron status. Central obesity causes adipocyte hypoxia resulting in chronic inflammation. Therefore, the objective of the present study was to determine if adipocyte hypoxia and associated inflammation signal hepatocyte hepcidin expression. The effect of adipocyte hypoxia on hepcidin expression was modeled using a 3T3-L1 adipocyte/Huh7 hepatocyte co-culture model. Adipocytes were cultured at either standard conditions (19% O2) or hypoxic conditions (1% O2). Compared to standard conditions, hypoxic 3T3-L1 cells had significantly higher IL-6 and leptin expression. Treatment of Huh7 cells with media from hypoxic or LPS-treated 3T3-L1 adipocytes significantly increased hepcidin promoter activity and mRNA compared to cells treated with normoxic 3T3-L1 media or control media. When the hepcidin STAT3 binding site was mutated, promoter activation by hypoxic media was abrogated. These data suggest that adipocyte hypoxia (a feature of central obesity) may increase hepcidin expression and plays a role in the association between obesity and poor iron status.  相似文献   

16.
Pulmonary hypertension (PH) is characterized by increased pulmonary vascular remodeling, resistance, and pressures. Reactive oxygen species (ROS) contribute to PH-associated vascular dysfunction. NADPH oxidases (Nox) and mitochondria are major sources of superoxide (O2•−) and hydrogen peroxide (H2O2) in pulmonary vascular cells. Hypoxia, a common stimulus of PH, increases Nox expression and mitochondrial ROS (mtROS) production. The interactions between these two sources of ROS generation continue to be defined. We hypothesized that mitochondria-derived O2•− (mtO2•−) and H2O2 (mtH2O2) increase Nox expression to promote PH pathogenesis and that mitochondria-targeted antioxidants can reduce mtROS, Nox expression, and hypoxia-induced PH. Exposure of human pulmonary artery endothelial cells to hypoxia for 72 h increased mtO2•− and mtH2O2. To assess the contribution of mtO2•− and mtH2O2 to hypoxia-induced PH, mice that overexpress superoxide dismutase 2 (TghSOD2) or mitochondria-targeted catalase (MCAT) were exposed to normoxia (21% O2) or hypoxia (10% O2) for three weeks. Compared with hypoxic control mice, MCAT mice developed smaller hypoxia-induced increases in RVSP, α-SMA staining, extracellular H2O2 (Amplex Red), Nox2 and Nox4 (qRT-PCR and Western blot), or cyclinD1 and PCNA (Western blot). In contrast, TghSOD2 mice experienced exacerbated responses to hypoxia. These studies demonstrate that hypoxia increases mtO2•− and mtH2O2. Targeting mtH2O2 attenuates PH pathogenesis, whereas targeting mtO2•− exacerbates PH. These differences in PH pathogenesis were mirrored by RVSP, vessel muscularization, levels of Nox2 and Nox4, proliferation, and H2O2 release. These studies suggest that targeted reductions in mtH2O2 generation may be particularly effective in preventing hypoxia-induced PH.  相似文献   

17.
Oxidative stress has been implicated in a number of pathologic conditions including ischemia/reperfusion damage and sepsis. The concept of oxidative stress refers to the aberrant formation of ROS (reactive oxygen species), which include O2•-, H2O2, and hydroxyl radicals. Reactive oxygen species influences a multitude of cellular processes including signal transduction, cell proliferation and cell death1-6. ROS have the potential to damage vascular and organ cells directly, and can initiate secondary chemical reactions and genetic alterations that ultimately result in an amplification of the initial ROS-mediated tissue damage. A key component of the amplification cascade that exacerbates irreversible tissue damage is the recruitment and activation of circulating inflammatory cells. During inflammation, inflammatory cells produce cytokines such as tumor necrosis factor-α (TNFα) and IL-1 that activate endothelial cells (EC) and epithelial cells and further augment the inflammatory response7. Vascular endothelial dysfunction is an established feature of acute inflammation. Macrophages contribute to endothelial dysfunction during inflammation by mechanisms that remain unclear. Activation of macrophages results in the extracellular release of O2•- and various pro-inflammatory cytokines, which triggers pathologic signaling in adjacent cells8. NADPH oxidases are the major and primary source of ROS in most of the cell types. Recently, it is shown by us and others9,10 that ROS produced by NADPH oxidases induce the mitochondrial ROS production during many pathophysiological conditions. Hence measuring the mitochondrial ROS production is equally important in addition to measuring cytosolic ROS. Macrophages produce ROS by the flavoprotein enzyme NADPH oxidase which plays a primary role in inflammation. Once activated, phagocytic NADPH oxidase produces copious amounts of O2•- that are important in the host defense mechanism11,12. Although paracrine-derived O2•- plays an important role in the pathogenesis of vascular diseases, visualization of paracrine ROS-induced intracellular signaling including Ca2+ mobilization is still hypothesis. We have developed a model in which activated macrophages are used as a source of O2•- to transduce a signal to adjacent endothelial cells. Using this model we demonstrate that macrophage-derived O2•- lead to calcium signaling in adjacent endothelial cells.  相似文献   

18.
Protection of cardiac microvascular endothelial cells (CMECs) against hypoxia injury is an important therapeutic strategy for treating ischaemic cardiovascular disease. In this study, we investigated the effects of qiliqiangxin (QL) on primary rat CMECs exposed to hypoxia and the underlying mechanisms. Rat CMECs were successfully isolated and passaged to the second generation. CMECs that were pre‐treated with QL (0.5 mg/mL) and/or HIF‐1α siRNA were cultured in a three‐gas hypoxic incubator chamber (5% CO2, 1% O2, 94% N2) for 12 hours. Firstly, we demonstrated that compared with hypoxia group, QL effectively promoted the proliferation while attenuated the apoptosis, improved mitochondrial function and reduced ROS generation in hypoxic CMECs in a HIF‐1α‐dependent manner. Meanwhile, QL also promoted angiogenesis of CMECs via HIF‐1α/VEGF signalling pathway. Moreover, QL improved glucose utilization and metabolism and increased ATP production by up‐regulating HIF‐1α and a series of glycolysis‐relevant enzymes, including glucose transport 1 (GLUT1), hexokinase 2 (HK2), 6‐phosphofructokinase 1 (PFK1), pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA). Our findings indicate that QL can protect CMECs against hypoxia injury via promoting glycolysis in a HIF‐1α‐dependent manner. Lastly, the results suggested that QL‐dependent enhancement of HIF‐1α protein expression in hypoxic CMECs was associated with the regulation of AMPK/mTOR/HIF‐1α pathway, and we speculated that QL also improved HIF‐1α stabilization through down‐regulating prolyl hydroxylases 3 (PHD3) expression.  相似文献   

19.
Macrophages undergo extensive metabolic reprogramming during classical pro-inflammatory polarization (M1-like). The accumulation of itaconate has been recognized as both a consequence and mediator of the inflammatory response. In this study we first examined the specific functions of itaconate inside fractionated mitochondria. We show that M1 macrophages produce itaconate de novo via aconitase decarboxylase 1 (ACOD1) inside mitochondria. The carbon for this reaction is not only supplied by oxidative TCA cycling, but also through the reductive carboxylation of α-ketoglutarate by isocitrate dehydrogenase (IDH). While macrophages are capable of sustaining a certain degree of itaconate production during hypoxia by augmenting the activity of IDH-dependent reductive carboxylation, we demonstrate that sufficient itaconate synthesis requires a balance of reductive and oxidative TCA cycle metabolism in mouse macrophages. In comparison, human macrophages increase itaconate accumulation under hypoxic conditions by augmenting reductive carboxylation activity. We further demonstrated that itaconate attenuates reductive carboxylation at IDH2, restricting its own production and the accumulation of the immunomodulatory metabolites citrate and 2-hydroxyglutarate. In line with this, reductive carboxylation is enhanced in ACOD1-depleted macrophages. Mechanistically, the inhibition of IDH2 by itaconate is linked to the alteration of the mitochondrial NADP+/NADPH ratio and competitive succinate dehydrogenase inhibition. Taken together, our findings extend the current model of TCA cycle reprogramming during pro-inflammatory macrophage activation and identified novel regulatory properties of itaconate.  相似文献   

20.
BackgroundExposure of atmospheric particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) is epidemiologically associated with illnesses. Potential effects of air pollutants on innate immunity have raised concerns. As the first defense line, macrophages are able to induce inflammatory response. However, whether PM2.5 exposure affects macrophage polarizations remains unclear.MethodsWe used freshly isolated macrophages as a model system to demonstrate effects of PM2.5 on macrophage polarizations. The expressions of cytokines and key molecular markers were detected by real-time PCR, and flow cytometry. The specific inhibitors and gene deletion technologies were used to address the molecular mechanisms.ResultsPM2.5 increased the expression of pro-inflammatory cytokines granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor alpha (TNFα). PM2.5 also enhanced the lipopolysaccharide (LPS)-induced M1 polarization even though there was no evidence in the change of cell viability. However, PM2.5 significantly decreased the number of mitochondria in a dose dependent manner. Pre-treatment with NAC, a scavenger of reactive oxygen species (ROS), prevented the increase of ROS and rescued the PM2.5-impacted M1 but not M2 response. However, mTOR deletion partially rescued the effects of PM2.5 to reduce M2 polarization.ConclusionsPM2.5 exposure significantly enhanced inflammatory M1 polarization through ROS pathway, whereas PM2.5 exposure inhibited anti-inflammatory M2 polarization through mTOR-dependent pathway.General significanceThe present studies suggested that short-term exposure of PM2.5 acts on the balance of inflammatory M1 and anti-inflammatory M2 macrophage polarizations, which may be involved in air pollution-induced immune disorders and diseases. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号