首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Little is known about the biology and life cycle of the Australian stingless bee, Austroplebeia australis (Friese). The ontogenic times for developing offspring, as well as the longevity of adults, drive the overall life cycle of a social colony. The developmental times for brood within stingless bee species which build cluster-type nests, such as A. australis, are as yet unreported. A technique was developed whereby ‘donor’ brood cells were separated from the main brood cluster and ‘grafted’ into hive annexes, allowing workers from within the colony to access the brood ‘grafts’ for hygiene and maintenance activities, whilst enabling observation of developing brood. The mean ontogenic time for A. australis workers, maintained at ~27 °C, was 55 days, which is similar to that reported for other stingless bees. The maximum longevity of A. australis was determined by marking cohorts of worker bees within five colonies. Workers within all colonies demonstrated extended longevity, with an overall maximum longevity of 161 days, with the oldest bee living for 240 days. Extended longevity may result from evolutionary adaptations to the floral resource scarcity, which is regularly experienced in semi-arid, inland Australia, the natural habitat of A. australis.  相似文献   

2.
3.
4.
Brood of the Australian stingless bee Trigona carbonaria was investigated using microsatellites to determine the origin of males. Genotypes of over 1800 males sampled from ten unrelated colonies were consistent with the hypothesis that the resident queen was the sole mother of the males and that workers, either natal or non-natal (parasitic), did not contribute to the production of males. Dissections of 300 workers from a total of four colonies showed that ovaries are present but not activated. Received 6 June 2007; revised 20 August 2007; accepted 12 September 2007.  相似文献   

5.
6.
7.
8.
9.
Research on bee communication has focused on the ability of the highly social bees, stingless bees (Hymenoptera, Apidae, Meliponini) and honeybees (Apidae, Apini), to communicate food location to nest-mates. Honeybees can communicate food location through the famous waggle dance. Stingless bees are closely related to honeybees and communicate food location through a variety of different mechanisms, many of which are poorly understood. We show that a stingless bee, Trigona hyalinata, uses a pulsed mass-recruitment system that is highly focused in time and space. Foragers produced an ephemeral, polarized, odour trail consisting of mandibular gland secretions. Surprisingly, the odour trail extended only a short distance away from the food source, instead of providing a complete trail between the nest and the food source (as has been described for other stingless bees). This abbreviated trail may represent an intermediate strategy between full-trail marking, found in some stingless bees, and odour marking of the food alone, found in stingless bees and honeybees.  相似文献   

10.
Ants are the only group of invertebrates currently identified as significant dispersers of seeds, but we report here the dispersal of Eucalyptus torelliana seeds by bees. Fruits of E. torelliana produce resin which is collected by workers of the stingless bee Trigona carbonaria. Seeds adhere to resin in the workers' corbiculate and are transported to the nest. Workers transported seeds distances of more than 300 m from the parent tree and seeds at the nest were viable and capable of germination. Seeds were removed from the nests by workers and discarded away from the nest, and E. torelliana trees became established in the vicinity of colonies of T. carbonaria. Mellitochory may be a novel method of seed dispersal where bees are dispersers, and associated with fruits that produce resin as an attractant for bees.  相似文献   

11.
Behavioral observations ofTrigona (Lepidotrigona) ventralis hoozana revealed the following ethological features: (1) Cell construction and food provisioning in cells are semisynchronous, and ovipositions are always batched. (2) The queen displays a peculiar behavior, “repeated turnings”, in front of the provisioned cells. (3) The queen often violently solicits workers food and, unlike other studied taxa, workers feed the queen rather frequently. (4) Worker oviposition is frequent when the colony is queen-right. An ethological diagnosis ofLepidotrigona is given with comparisons to other stingless bee taxa. Contribution to the knowledge of the Indo-Pacific stingless bees. IX. Behavior studies of the stingless bees, with special reference to the oviposition process. XII.  相似文献   

12.
Signals that are perceived over long distances or leave extended spatial traces are subject to eavesdropping. Eavesdropping has therefore acted as a selective pressure in the evolution of diverse animal communication systems, perhaps even in the evolution of functionally referential communication. Early work suggested that some species of stingless bees (Hymenoptera, Apidae, Meliponini) may use interceptive olfactory eavesdropping to discover food sources being exploited by competitors, but it is not clear if any stingless bee can be attracted to the odour marks deposited by an interspecific competitor. We show that foragers of the aggressive meliponine bee, Trigona spinipes, can detect and orient towards odour marks deposited by a competitor, Melipona rufiventris, and then rapidly take over the food source, driving away or killing their competitors. When searching for food sources at new locations that they are not already exploiting, T. spinipes foragers strongly prefer M. rufiventris odour marks to odour marks deposited by their own nest-mates, whereas they prefer nest-mate odour marks over M. rufiventris odour marks at a location already occupied by T. spinipes nest-mates. Melipona rufiventris foragers flee from T. spinipes odour marks. This olfactory eavesdropping may have played a role in the evolution of potentially cryptic communication mechanisms such as shortened odour trails, point-source only odour marking and functionally referential communication concealed at the nest.  相似文献   

13.
Summary: Nestmate recognition was studied in the Neotropical stingless bee Melipona panamica, a species in which workers "sneak" their own reproductive eggs into 1 % of brood cells. We manipulated four factors that could influence individual recognition cues: the mother queen, the environment during the immature stage, the environment during the early adult stage, and worker age. We also simulated the action of natural enemies on colonies tested for discrimination of such worker characteristics. All factors that we tested affected responses of the discriminating workers, which could recognize sisters, nieces and unrelated workers. Previous exposure of unrelated callow bees to the odor of the host nest greatly increased chances of acceptance by the host colony. Probability of acceptance decreased, however, with increasing age of introduced bees or increasing disturbance of the host colony. These complexities in patterns of nestmate recognition and nest defense are adequately explained from the standpoint of inclusive fitness of the discriminating workers. Differences in nestmate recognition and worker egg laying among Meliponini are also discussed.  相似文献   

14.
Sufficient material has been assembled to restore the powerful pectoral girdle and large fore limbs of Platypterygius australis (M'Coy). A reasonable approximation to the line of action of dorsal and ventral muscles which principally affected the trim of the low-set fin-blades was along the middle of the fin. Increased tension brought the fin-blades nearer horizontal (to a diving position) and varying amounts of relaxation during forward movement allowed mainly water resistance to increase the tilt. The flexible blade edges were crucial in this. Unequal tension on the blades would have caused turning of the animal with whatever rapidity was desired. Allowing both fin-blades to rise together to stalling point could have checked the animal abruptly as it struck prey. Large relative and absolute increases in the portions of the coracoids adjacent to the median symphysis highlight the relative development of young individuals. Positive allometric growth in this area stopped quite suddenly as the animals approached 6 m total length, leaving only general size increase.  相似文献   

15.
Drones of stingless bee species often form distinctive congregations of up to several hundred individuals which can persist over considerable periods of time. Here we analyse the genetic structure of three drone congregations of the neotropical stingless bee Scaptotrigona mexicana employing eight microsatellite markers. Two congregations were close to each other (50 m), the third one was located more than 10 km away from them. This spatial pattern was also reflected on the genetic level : the two close congregations did not show any population sub-structuring, whereas the more distant congregation showed a significant population differentiation to both of them. Population subdifferentiation was however low with F st values (F st = 0.020 and 0.014) between the distant congregations, suggesting gene flow over larger distances mediated by the drones of S. mexicana. Based on the genotypic data we also estimated the number of colonies contributing drones to the congregations. The two joint congregations consisted of drones originating from 39,6 colonies, while the third congregation was composed of drones from 21,8 colonies, thus proving that congregations of S. mexicana are constituted of unrelated drones of multicolonial origin. Received 23 April 2007; revised 21 September 2007; accepted 2 October 2007.  相似文献   

16.
17.
18.
Tetragonisca angustula stingless bees are considered as solitary foragers that lack specific communication strategies. In their orientation towards a food source, these social bees use chemical cues left by co-specifics and the information obtained in previous foraging trips by the association of visual stimuli with the food reward. Here, we investigated their ability to learn the association between odors and reward (sugar solution) and the effect on learning of previous encounters with scented food either inside the hive or during foraging. During food choice experiments, when the odor associated with the food was encountered at the feeding site, the bees’ choice is biased to the same odor afterwards. The same was not the case when scented food was placed inside the nest. We also performed a differential olfactory conditioning of proboscis extension response with this species for the first time. Inexperienced bees did not show significant discrimination levels. However, when they had had already interacted with scented food inside the hive, they were able to learn the association with a specific odor. Possible olfactory information circulation inside the hive and its use in their foraging strategies is discussed.  相似文献   

19.
20.
A new study of a surviving syntype of Trigona meadewaldoi Cockerell, 1915, was undertaken and several widely employed names for Neotropical stingless bees recognized as junior synonyms. A lectotype is designated for Trigona meadewaldoi and the following new synonymies established: Tetragona francoi Moure, 1946, and Trigona (Frieseomelitta) freiremaiai Moure, 1963. These nomenclatural matters are here settled and the species thoroughly characterized in advance of a forthcoming phylogenetic consideration of the genus Frieseomelitta von Ihering, 1912.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号