首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Transient expression of foreign genes by Agrobacterium infiltration is a versatile technique that can be used as a rapid tool for functional protein production in plants. A reproducible protocol of large-scale production of foreign proteins via the novel plant transient expression system in Pisum sativum L. was established in our study. Non-detached plants from soil-independent culture were used as the target organ, and vacuum infiltrating mediated by Agrobacterium tumefaciens harboring green fluorescent protein (GFP) gene was performed. Step-by-step optimization was performed and showed that the quality of plant material as well as agro-infiltration conditions were the major factors influencing the gene expression. Monitoring the transient GFP expression daily, the highest expression level was achieved on the 8th day post-infiltration. Evidence of anti-acidic fibroblast growth factor-single chain variable fragment (anti-aFGF-scFv) gene expression in pea seedling was also achieved using agro-mediated vacuum infiltration system. Our work proves that the system is suitable for the largescale production of pharmaceutical proteins. The in planta infiltration system described here provides a powerful tool to explore easily gene expression in Pisum sativum L. avoiding tissue culture steps and the labor-intensive generation of transgenic plants.  相似文献   

2.
Potato is the third most important food crop worldwide. However, genetic and genomic research of potato has lagged behind other major crops due to the autopolyploidy and highly heterozygous nature associated with the potato genome. Reliable and technically undemanding techniques are not available for functional gene assays in potato. Here we report the development of a transient gene expression and silencing system in potato. Gene expression or RNAi-based gene silencing constructs were delivered into potato leaf cells using Agrobacterium-mediated infiltration. Agroinfiltration of various gene constructs consistently resulted in potato cell transformation and spread of the transgenic cells around infiltration zones. The efficiency of agroinfiltration was affected by potato genotypes, concentration of Agrobacterium, and plant growth conditions. We demonstrated that the agroinfiltration-based transient gene expression can be used to detect potato proteins in sub-cellular compartments in living cells. We established a double agroinfiltration procedure that allows to test whether a specific gene is associated with potato late blight resistance pathway mediated by the resistance gene RB. This procedure provides a powerful approach for high throughput functional assay for a large number of candidate genes in potato late blight resistance.  相似文献   

3.
The Agrobacterium-mediated transient assay is a relatively rapid technique and a promising approach for assessing the expression of a gene of interest. Despite the successful application of this transient expression system in several plant species, it is not well understood in spinach. In this study, we analyzed various factors, including infiltration method, Agrobacterium strain and density, and co-infiltration of an RNA silencing suppressor (p19), that affect transient expression following agroinfiltration in spinach. To evaluate the effects of these factors on the transient expression system, we used the β-glucuronidase (GUS) reporter gene construct pB7WG2D as a positive control. The vacuum-based infiltration method was much more effective at GUS gene expression than was the syringe-based infiltration method. Among the three Agrobacterium strains examined (EHA105, LBA4404, and GV2260), infiltration with the GV2260 strain suspension at a final optical cell density (OD600) of 1.0 resulted in the highest gene expression. Furthermore, co-expression of suppressor p19 also increased the efficiency and duration of gene expression and protein accumulation. The results indicate that the use of optimized conditions for transient gene expression could be a simple, rapid, and effective tool for functional genomics in spinach.  相似文献   

4.
RNA interference (RNAi) was established in Nicotiana benthamiana plants by introducing constructs containing a defective interfering (DI) sequence from Tomato bushy stunt virus (TBSV) in combination with a conserved sense-sequence from the target Grapevine fanleaf virus (GFLV). Silencing in plants was confirmed by Agrobacterium-mediated infiltration of a GFP-sensor containing the GFLV-derived target sequence. The transgene-induced RNAi led to silencing of the GFP-sensor and GFP fluorescence was absent post-infiltration. In plants without GFP fluorescence after infiltration with the GFP-sensor, siRNA specific to GFP and the target virus sequence could not be detected. In contrast, infiltrated leaves of wild type and transgenic plants showing GFP fluorescence after infiltration revealed accumulation of siRNA specific to the sequence of the sensor. Silencing could be inhibited by co-infiltration using a p19 silencing suppressor construct together with the GFP-sensor, which always resulted in bright GFP fluorescence. In parallel, virus resistance of transgenic Nicotiana benthamiana was investigated via challenge inoculation with GFLV. Our results indicate that efficient RNAi in transgenic plants does not necessarily lead to a detectable accumulation of siRNA.  相似文献   

5.
Transient expression of genes using Agrobacterium is a powerful tool for the analysis of gene function in plants. We have developed this method for the analysis of genes involved in disease resistance in grapevine leaves. Our research showed that the quality of the plant material, the plant genotype used for agro-infiltration and the presence of additional virulence factors (carried on plasmid pCH32) in the Agrobacterium strain are all important factors for success of the procedure. After optimising these factors, we consistently achieve sufficient acceptable levels of expression of the markers beta-glucuronidase (GUS) and green fluorescent protein (GFP) using vacuum infiltration of grapevine leaves from plants grown in vitro. We used this procedure to investigate the proposed role of stilbenes in defense against grapevine downy mildew (Plasmopara viticola) by transiently overexpressing stilbene synthase in grapevine leaves, before infection with P. viticola. We found that agro-infiltration itself induces the synthesis of stilbenes in grapevine leaves, thus preventing us to test the effect of the overexpression of stilbene synthase in defense. However, our results revealed that agro-infiltration before P. viticola inoculation had an effect on the development of the infection. Further research is required to show whether stilbenes or some other factor are the causal agent restricting pathogen development. The method described here provides and excellent tool to exploit at the many grapevine genomic resources now available, and will contribute to a better understanding of many areas of grapevine biology.  相似文献   

6.
Agrobacterium mediated genetic transformation of plants have advantages over other methods, especially for making single copy transgenic plants with reduced chances of gene silencing and instability. However, monocotyledonous plant species could not utilize the full potential of this system because of possible limitations in Agrobacterium interaction with monocot plant cells. Agrobacterium attachment as a factor in genetic transformation was studied in the leaf, shoot apex, and leaf derived callus of sorghum (Sorghum bicolor (L) Moench). Pre-induction of Agrobacterium with acetosyringone was found necessary for Agrobacterium attachment to sorghum tissues. All the explants responded positively, with preferential Agrobacterium attachment and colonization around the tissues having actively dividing cells. Callus proved to be the best explant for Agrobacterium attachment as observed in scanning electron microscopy and transient GUS expression. Loss of Agrobacterium attachment was observed with an increase in the degree of tissue differentiation.Key words: Genetic transformation, Acetosyringone, Scanning electron microscopy, Transient gene expression, GUS assays, qRT-PCR  相似文献   

7.
8.
Agrobacterium-mediated transient assays for the analysis of gene function are used as alternatives to genetic complementation and stable plant transformation. Although such assays are routinely performed in several plant species, they have not yet been successfully applied to grapevines. We explored genetic background diversity of grapevine cultivars and performed agroinfiltration into in vitro cultured plants. By combining different genotypes and physiological conditions, we developed a protocol for efficient transient transformations of selected grapevine cultivars. Among the four cultivars analyzed, Sugraone and Aleatico exhibited high levels of transient transformation. Transient expression occurred in the majority of cells within the infiltrated tissue several days after agroinfiltration and, in a few cases, it later spread to a larger portion of the leaf. Three laboratory strains of Agrobacterium tumefaciens with different virulence levels were used for agroinfiltration assays on grapevine plants. This method promises to be a powerful tool to perform subcellular localization analyses. Grapevine leaf tissues were transformed with fluorescent markers targeted to cytoplasm (free GFP and mRFP1), endoplasmatic reticulum (GFP::HDEL), chloroplast (GAPA1::YFP) and mitochondria (β::GFP). Confocal microscope analyses demonstrated that these subcellular compartments could be easily visualized in grapevine leaf cells. In addition, from leaves of the Sugraone cultivar agroinfiltrated with endoplasmic reticulum-targeted GFP-construct, stable transformed cells were obtained that show the opportunity to convert a transiently transformed leaf tissue into a stably transformed cell line. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
10.
Influenza virus‐like particles (VLPs) have been shown to induce a safe and potent immune response through both humoral and cellular responses. They represent promising novel influenza vaccines. Plant‐based biotechnology allows for the large‐scale production of VLPs of biopharmaceutical interest using different model organisms, including Nicotiana benthamiana plants. Through this platform, influenza VLPs bud from the plasma membrane and accumulate between the membrane and the plant cell wall. To design and optimize efficient production processes, a better understanding of the plant cell wall composition of infiltrated tobacco leaves is a major interest for the plant biotechnology industry. In this study, we have investigated the alteration of the biochemical composition of the cell walls of N. benthamiana leaves subjected to abiotic and biotic stresses induced by the Agrobacterium‐mediated transient transformation and the resulting high expression levels of influenza VLPs. Results show that abiotic stress due to vacuum infiltration without Agrobacterium did not induce any detectable modification of the leaf cell wall when compared to non infiltrated leaves. In contrast, various chemical changes of the leaf cell wall were observed post‐Agrobacterium infiltration. Indeed, Agrobacterium infection induced deposition of callose and lignin, modified the pectin methylesterification and increased both arabinosylation of RG‐I side chains and the expression of arabinogalactan proteins. Moreover, these modifications were slightly greater in plants expressing haemagglutinin‐based VLP than in plants infiltrated with the Agrobacterium strain containing only the p19 suppressor of silencing.  相似文献   

11.
12.
Grapevine is an economically important crop, and the recent completion of its genome makes it possible to study the function of specific genes through reverse genetics. However, the analysis of gene function by RNA interference (RNAi) in grapevine is difficult, because the generation of stable transgenic plants has low efficiency and is time consuming. Recently, transient expression of genes in grapevine leaves has been obtained by Agrobacterium tumefaciens infiltration (agroinfiltration). We therefore tested the possibility to silence grapevine genes by agroinfiltration of RNAi constructs. A construct to express a double strand RNA (dsRNA) corresponding to the defense-related gene VvPGIP1, encoding a polygalacturonase-inhibiting protein (PGIP), was obtained and transiently expressed by agroinfiltration in leaves of grapevine plants grown in vitro. Expression of VvPGIP1 and accumulation of PGIP activity were strongly induced by infiltration with control bacteria, but not with bacteria carrying the dsRNA construct, indicating that the gene was efficiently silenced. In contrast, expression of another defense-related gene, VST1, encoding a stilbene synthase, was unaffected by the dsRNA construct. We have therefore demonstrated the possibility of transient down-regulation of grapevine genes by agroinfiltration of constructs for the expression of dsRNA. This system can be employed to evaluate the effectiveness of constructs that can be subsequently used to generate stable RNAi transgenic plants.  相似文献   

13.
A protocol for producing transgenic radish (Raphanus sativus) was obtained by using both ultrasonic and vacuum infiltration assisted, Agrobacterium-mediated transformation. The Agrobacterium strain LBA4404 contained the binary vector pBI121-LEA (late embyogenesis abundant), which carried a Group 3 LEA gene, from Brassica napus. Among six combinations, Agrobacterium-mediated transformation assisted by a combination of 5-min sonication with 5-min vacuum infiltration resulted in the highest transformation frequency. The existence, integration and expression of transferred LEA gene in transgenic T1 plants were confirmed by PCR, genomic Southern and Western blot analysis. Transgenic radish demonstrated better growth performance than non-transformed control plants under osmotic and salt stress conditions. Accumulation of Group 3 LEA protein in the vegetative tissue of transgenic radish conferred increased tolerance to water deficit and salt stress.  相似文献   

14.
In this study, floral spray and floral dip were used to replace the vacuum step in the Agrobacterium-mediated transformation of a superoxide dismutase (SOD) gene into Arabidopsis. The transgene was constructed by using a CaMV 35S promoter to drive a rice cytosolic CuZnSOD coding sequence in Arabidopsis. The transgene construct was developed in binary vectors and mobilized into Agrobacterium. When Arabidopsis plants started to initiate flower buds, the primary inflorescence shoots were removed and then transformed by floral spray or floral dip. More than 300 transgenic plants were generated to assess the feasibility of floral spray used in the in planta transformation. The result indicates that the floral spray method of Agrobacterium can achieve rates of in planta transformation comparable to the vacuum-infiltration and floral dip methods. The floral spray method opens up the possibility of in planta transformation of plant species which are too large for dipping or vacuum infiltration.  相似文献   

15.
16.
Plant transformation has emerged as an important tool to integrate foreign genes in the plant genome to modify the plants for desired traits. Though many techniques of plant transformation are available; getting single copy transgenic events and cost associated remains a big challenge. Thus Agrobacterium-mediated transformation remains the method of choice due to multiple advantages. In the present work a tissue culture free protocol of Agrobacterium-mediated transformation was optimized in safflower, an oil seed crop recalcitrant to transformation. As a proof of concept we selected pCAMBIA2300 gene cassette containing Arabidopsis specific delta 15 desaturase (FAD3) downstream to truncated seed specific promoter beta-conglycinin and optimized tissue culture free protocol of Agrobacterium-mediated transformation using embryos as explants. Addition of silwet L-77, sonication treatment, vacuum infiltration in infection medium and use of paper wicks in co-cultivation period increased the transformation efficiency to 19.3%. Further, success in transformation was confirmed via product accumulation in 21 independent transgenic events wherein oil in transformed seeds showed significant accumulation of alpha-linolenic acid (ALA; 18:3; n3) which is generated from linoleic acid (LA; 18:2; n3) in a FAD3 catalyzed reaction. The present protocol can be utilized to produce transgenic safflower with different desired characters.  相似文献   

17.
In the past few years, the usefulness of transient expression assays has continuously increased for the characterization of unknown gene function and metabolic pathways. In grapevine (Vitis vinifera L.), one of the most economically important fruit crops in the world, recent systematic sequencing projects produced many gene data sets that require detailed analysis. Due to their rapid nature, transient expression assays are well suited for large‐scale genetic studies. Although genes and metabolic pathways of any species can be analysed by transient expression in model plants, a need for homologous systems has emerged to avoid the misinterpretation of results due to a foreign genetic background. Over the last 10 years, various protocols have thus been developed to apply this powerful technology to grapevine. Using cell suspension cultures, somatic embryos, leaves or whole plantlets, transient expression assays enabled the study of the function, regulation and subcellular localization of genes involved in specific metabolic pathways such as the biosynthesis of phenylpropanoids. Disease resistance genes that could be used for marker‐assisted selection in conventional breeding or for stable transformation of elite cultivars have also been characterized. Additionally, transient expression assays have proved useful for shaping new tools for grapevine genetic improvement: synthetic promoters, silencing constructs, minimal linear cassettes or viral vectors. This review provides an update on the different tools (DNA constructs, reporter genes, vectors) and methods (Agrobacterium‐mediated and direct gene transfer methods) available for transient gene expression in grapevine. The most representative results published thus far are then described.  相似文献   

18.
《Plant science》1997,130(1):87-95
Efficiency of Agrobacterium mediated gene transfer was improved in rice by microprojectile pretreatment. Fertile transgenic plants were easily recovered using this protocol. Since an osmotic treatment is part of the bombardment protocol, we studied the effect of plasmolysis alone (i.e. without any microprojectiles) on transient expression of the gus gene transferred by Agrobacterium to precultured rice embryos. We report here for the first time that plasmolysis alone as a single pretreatment, yielded an even higher number of cells expressing the marker gene than the combination of microprojectile bombardment and osmotic treatment. This indicates that the effect of the osmoticum on gene transfer is independent from bombardment.  相似文献   

19.
Genetic Transformation of Major Wine Grape Cultivars of Vitis Vinifera L.   总被引:5,自引:0,他引:5  
We have developed an Agrobacterium-mediated transformation system for a number of important grapevine cultivars used in wine production. Transgenic plants were obtained for the seven cultivars: Cabernet Sauvignon, Shiraz, Chardonnay, Riesling, Sauvignon Blanc, Chenin Blanc and Muscat Gordo Blanco. Embryogenic callus was initiated from anther filaments and genotypic differences were observed for initiation and subsequent proliferation with Chardonnay responding most favourably to culture conditions. The transformation system allowed the recovery of germinating transgenic embryos 10–12 weeks after Agrobacterium inoculation and plants within 18 weeks. Examination of the expression patterns of the green fluorescent protein gene under the control of the CAMV35S promoter in leaf tissue of transgenic plants showed that for up to 35% of plants the pattern was not uniform. The successful transformation of a genetically diverse group of wine grape cultivars indicates that the transformation system may have general application to an even wider range of Vitis vinifera cultivars.  相似文献   

20.
Turmeric (Curcuma longa L.) is a rhizomatous species belonging to the Zingiberaceae and known both for its culinary and medicinal uses. Based on an efficient tissue culture and somatic embryogenesis system that we established, we have developed a reliable Agrobacterium-mediated transformation protocol for this species. Calli derived from turmeric inflorescences were used as source tissues for transformation. Factors affecting transformation and regeneration efficiency were evaluated, including callus induction and culture conditions, Agrobacterium strains, co-cultivation conditions, selection agent sensitivity and bacterial elimination, and transformant selection. Optimized transformation conditions were identified, including: use of Agrobacterium strain EHA105 with plasmid pBISN1 for infection; a modified B5 medium system for callus induction, subculture, co-culture and selection; and MS media for transformant regeneration. Transgenic plants and their vegetative (clonal) progeny stably expressed the transgene as indicated by GUS assay, PCR and Southern blot analysis. In addition, a transient gene expression system was developed that involves Agrobacterium infiltration of young turmeric leaves followed by in vitro regeneration of plantlets. This approach established that a MADS-box-GFP fusion protein was localized to the nucleus of turmeric cells. The stable transformation and transient expression systems described herein offer opportunities for assaying gene function in turmeric and for improving turmeric properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号