首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The esterification of all-trans retinol and the occurrence of cytosolic retinoid-binding proteins was investigated in cultured bovine retinal pigment epithelium (RPE) cells. 3H-labeled all-trans retinyl ester (mainly palmitate) was formed at an initial rate of 0.1 nmol·mg protein−1·min−1 when 3H-labeled all-trans retinol was incubated with the 100,000 g pellet obtained from a homogenate of freshly-harvested cells. No esterification could be detected under the same conditions after 14 days in culture in defined medium (DM) or in medium containing 20% fetal bovine serum (CM). No enhancement or restoration of esterifying capacity was observed when the assay mixture was supplemented with palmitoyl CoA. As determined by specific, saturable binding of 3H-labeled all-trans retinol and 3H-labeled 11-cis retinal to proteins with mol. wts 16,000 and 33,000 dalton on calibrated Bio-Sil TSK 250 size-exclusion columns, the cytosol of freshly-harvested RPE cells contained cellular retinol-binding protein (CRBP) and cellular retinal-binding protein (CRAlBP). By comparison with the quantity of 3H-labeled all-trans retinol bound under identical conditions to pure dog liver CRBP, it was estimated that fresh RPE cells contained 102 ± 3 ng CRBP·μg cytosol protein−1. In cultured and subcultured cells, CRBP was present at much lower levels (down to one-tenth of the initial amounts) and CRAlBP could not be detected. Since binding of 3H-labeled all-trans retinoic acid to a protein with molecular weight of 17,000 dalton was not observed in the cytosols of fresh or cultured cells, it was concluded that cellular retinoic acid binding protein (CRABP) was either present at very low levels or absent altogether. An unidentified peak of specific 3H-labeled all-trans-retinoic acid binding at mol. wt 61,000 dalton was prominent in subcultured cells. These results show that in RPE cells in culture the expression of differentiated phenotype with respect to retinoid utilization undergoes significant modification. It is postulated that changes in the composition of the extracellular matrix (e.g. absence of interstitial retinol-binding protein, IRBP) may be involved.  相似文献   

2.
Retinol (vitamin A alcohol) is involved in the proper differentiation of epithelia. The mechanism of this involvement is unknown. We have previously reported that purified cellular retinol-binding (CRBP) will mediate specific binding of retinol to nuclei isolated from rat liver. We now report that pure CRBP delivers retinol to the specific nuclear binding sites without itself remaining bound. Triton X-100-treated nuclei retain the majority of these binding sites. CRBP is also capable of delivering retinol specifically to isolated chromatin with no apparent loss of binding sites, as compared to whole nuclei. CRBP again does not remain bound after transferring retinol to the chromatin binding sites. When isolated nuclei are incubated with [3H]retinol- CRBP, sectioned, and autoradiographed, specifically bound retinol is found distributed throughout the nuclei. Thus, CRBP delivers retinol to the interior of the nucleus, to specific binding sites which are primarily, if not solely, on the chromatin. The binding of retinol to these sites may affect gene expression.  相似文献   

3.
We have investigated the esterification by liver membranes of retinol bound to cellular retinol-binding protein (CRBP). When CRBP carrying [3H]retinol as its ligand was purified from rat liver cytosol and incubated with rat liver microsomes, a significant fraction of the [3H]retinol was converted to [3H]retinyl ester. Esterification of the CRBP-bound [3H]retinol, which was maximal at pH 6-7, did not require the addition of an exogenous fatty acyl group. Indeed, when additional palmitoyl-CoA or coenzyme A was provided, the rate of esterification increased either very slightly or not at all. The esterification reaction had a Km for [3H]retinol-CRBP of 4 +/- 0.6 microM and a maximum velocity of 145 +/- 52 pmol/min/mg of microsomal protein (n = 4). The major products were retinyl palmitate/oleate and retinyl stearate in a ratio of approximately 2 to 1 over a range of [3H]retinol-CRBP concentrations from 1 to 8 microM. The addition of progesterone, a known inhibitor of the acyl-CoA:retinol acyltransferase reaction, consistently increased the rate of retinyl ester formation when [3H]retinol was delivered bound to CRBP. These experiments indicate that retinol presented to liver microsomal membranes by CRBP can be converted to retinyl ester and that this process, in contrast to the esterification of dispersed retinol, is independent of the addition of an activated fatty acid and produces a pattern of retinyl ester species similar to that observed in intact liver. A possible role of phospholipids as endogenous acyl donors in the esterification of retinol bound to CRBP is supported by our observations that depletion of microsomal phospholipid with phospholipase A2 prior to addition of retinol-CRBP decreased the retinol-esterifying activity almost 50%. Conversely, incubating microsomes with a lipid-generating system containing choline, CDP-choline, glycerol 3-phosphate, and an acyl-CoA-generating system prior to addition of retinol-CRBP increased retinol esterification significantly as compared to buffer-treated controls.  相似文献   

4.
An NAD-dependent rat liver cytosolic dehydrogenase accepted as substrate retinal generated in situ by microsomes from retinol bound to excess CRBP (cellular retinol binding protein, type I). This activity, which was not retained by anion-exchange chromatography at pH 9.15, was designated P1. P1 activity increased 2.5-fold, with no statistically significant change in its K or Hill coefficient, in liver cytosol from rats fed a retinoid-deficient diet. Orally dosed retinoic acid partially suppressed the increase. Activities chromatographically similar to hepatic P1 were observed in cytosols from rat kidney and testes. P1, purified from rat liver cytosol, had a pI of approximately 8.3, migrated as a tetramer (214 kDa) on a Sephadex G-200 column, and had a subunit molecular mass of 55 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With free retinal it catalyzed a maximum rate of retinoic acid synthesis of 265 nmol/min/mg of protein and exhibited allosteric kinetics with a K of 0.76 +/- 0.35 microM and a Hill coefficient of 1.5 +/- 0.13 (mean +/- S.D., n = 4). Substrate inhibition was noted with retinal concentrations greater than 6 microM. The purified enzyme not only recognized retinal generated by microsomes as substrate, but also recognized retinal bound to CRBP. The rates of retinoic acid synthesis from CRBP-retinal, with a series of increasing apoCRBP concentrations, exceeded the rates that would be supported by the free retinal present. The CRBP-retinal complex exhibited allosteric kinetics (K, 0.13 microM; Hill coefficient, 1.75; averages of duplicates) in the presence of excess apoCRBP (the ratio total CRBP/total retinal at each concentration of retinal was 2). This enzyme is likely to play a significant role in retinoic acid synthesis in vivo, because it participates in the synthesis of retinoic acid from a physiologically occurring form of retinol (holoCRBP), reflects retinoid status, and is distributed in extrahepatic tissues in addition to liver. These results also suggest a novel role for CRBP in retinoid metabolism, facilitating the conversion of retinal into retinoic acid.  相似文献   

5.
Cellular retinol-binding protein has been purified to homogeneity from rat liver. The procedures utilized in the purification included acid precipitation, gel filtration on Sephadex G-75 and G-50, and chromatography on DEAE-cellulose. The binding protein was purified approximately 3,500-fold, based on total soluble liver protein. The protein is a single polypeptide chain with a molecular weight of 14,600 based on information obtained by the techniques of sedimentation equilibrium analysis, gel filtration, and sodium dodecyl sulfate-polyacrylamide electrophoresis. The protein binds retinol with high affinity; the appparent dissociation constant was determined by fluorometric titration to be 1.6 X 10(-8) M. Retinol bound to the protein has an absorption spectrum (lambdamax, 350 nm) considerably altered from the spectrum of retinol in ethanol (lambdamax, 325 nm).  相似文献   

6.
N Noy  W S Blaner 《Biochemistry》1991,30(26):6380-6386
The interactions of retinol with rat cellular retinol-binding protein (CRBP) and with rat serum retinol-binding protein (RBP) were studied. The equilibrium dissociation constants of the two retinol-protein complexes (Kd) were found to be 13 x 10(-9) and 20 x 10(-9) M for CRBP and for RBP, respectively. The kinetic parameters governing the interactions of retinol with the two binding proteins were also studied. It was found that although the equilibrium dissociation constants of the two retinol-protein complexes were similar, retinol interacted with CRBP 3-5-fold faster than with RBP; the rate constants for dissociation of retinol from CRBP and from RBP (koff) were 0.57 and 0.18 min-1, respectively. The rate constants for association of retinol with the two proteins (kon) were calculated from the expression: Kd = koff/kon. The kon's for retinol associating with CRBP and with RBP were found to be 4.4 x 10(7) and 0.9 x 10(7) M-1 min-1, respectively. The data suggest that the initial events of uptake of retinol by cells are not rate-limiting for this process and that the rate of uptake is probably determined by the rate of metabolism of this ligand. The data indicate further that the distribution of retinol between RBP in blood and CRBP in cytosol is at equilibrium and that intracellular levels of retinol are regulated by the levels of CRBP.  相似文献   

7.
Cellular retinol-binding protein (type II) (CRBP(II)), a newly described retinol-binding protein, is present in the small intestinal absorptive cell at high levels. Retinol (vitamin A alcohol) presented as a complex with CRBP(II) was found here to be esterified by microsomal preparations from rat small intestinal mucosa. The esterification observed utilized an endogenous acyl donor(s) and produced retinyl esters containing linoleate, oleate, palmitate, and stearate in a proportion quite similar to that previously reported for retinyl esters in lymph and isolated chylomicrons of rat. No dependence on endogenous or exogenous acyl-CoA could be demonstrated. The apparent Km for retinol-CRBP(II) in the reaction with endogenous acyl donor was 2.4 X 10(-7) M. Retinol presented as a complex with CRBP(II) was esterified more than retinol presented as a complex with cellular retinol-binding protein or retinol-binding protein, two other proteins known to bind retinol in vivo, but about the same as retinol presented bound to bovine serum albumin or beta-lactoglobulin. The ability of protein-bound retinol to be esterified was related to accessibility of the hydroxyl group, as judged by the ability of alcohol dehydrogenase to oxidize the bound retinol. However, whereas retinol bound to CRBP(II) was unavailable for esterification in any acyl-CoA-dependent reaction, retinol bound to bovine serum albumin was rapidly esterified in a reaction utilizing exogenous acyl-CoA. The results suggest that one of the functions of CRBP(II) is to accept retinol after it is absorbed or generated from carotenes in the small intestine and present it to the appropriate esterifying enzyme.  相似文献   

8.
Bovine free secretory component was purified from whey by salt precipitation, gel filtration, DEAE-cellulose and phosphocellulose chromatography, and immunoadsorption. It was obtained in immunologically pure form and in 56% yield. The Stokes radius of pure free secretory component was found to be 4.3 nm by gel filtration, and an (see article) of 4.1 S was determined by the ultracentrifuge. The molecular weight was 79,000 by sodium dodecyl sulfate gel electrophoresis and by sedimentation dquilibrium in the ultracentrifuge, using a v of 0.73 determined by ultracentrifugation in D2O and H2O. A minimal axial ratio of approximately 5 was calculated. Amino acid analysis of bovine free secretory component showed remarkable similarity to that of human, dog, and rabbit but carbohydrate analysis showed significant differences. In contrast to the human, bovine free secretory compoennt has 2 methionine residues/mol. The NH2-terminal sequence was found to be Lys-Ser-Pro-Ile-PPHE-Gly-Pro-Glu-Glu-Val-Asp-Ser-Val. This sequence is identical with that the human and dog. However, the poor immunological cross-reactivity between the dog, human, and bovine proteins suggests that significant structural differences will be found in other regions of the molecule.  相似文献   

9.
Some physicochemical characteristics of corticosteroid binding globulin (CBG) in several species have been determined. Molecular radii were determined from Ferguson plots and were used in conjunction with sedimentation coefficients determined by sucrose density gradient centrifugation to calculate the molecular weights of the CBG. These were found to range from 44,200 (dog) to 60,000 (turtle) for most species. The squirrel monkey was found to have a molecular weight twice that of other species (119,800). Purified CBG was prepared from human, rat, and guinea pig sera. The molecular weights of the purified material, as determined by gel electrophoresis in the presence of sodium dodecyl sulfate, were in excellent agreement with those determined by Ferguson analysis. Careful examination of the purified proteins by electrophoresis at pH 8.3 revealed that each consisted of two closely related electrophoretic variants. Tryptic peptides were prepared from the purified proteins and separated by reversed phase HPLC chromatography. The peptide patterns were identical for the three proteins with the exception of three hydrophilic peptides. Amino terminal sequence analysis of the rat and human proteins revealed no apparent homology, however. The immunologic relatedness of the three purified proteins was also examined, but no crossreactivity was observed. The results obtained suggest that while the molecular size and hydrophobicity of peptides have been conserved across species considerable surface differences must exist.  相似文献   

10.
A regulatory protein for a liver GTP-binding protein (G protein) with a molecular weight value of 24,000 (24K G), which we have recently purified, was purified to near-homogeneity from rat liver cytosol and characterized. This regulatory protein, designated here as GDP dissociation inhibitor for 24K G (24K G GDI), inhibited the dissociation of GDP from and the subsequent binding of GTP to 24K G. 24K G GDI was inactive for other ras p21/ras p21-like small G proteins including c-Ha-ras p21, rhoB p20, smg p21B, and smg p25A. 24K G was, however, recognized by bovine brain smg p25A GDI which regulated the GDP/GTP exchange reaction of smg p25A. By analyses of sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE), immunoblotting with anti-smg p25A GDI antibody, two-dimensional PAGE, and C4 column chromatography, 24K G GDI showed physical properties very similar to those of smg p25A GDI. The peptide map and the partial amino acid sequences of 24K G GDI were not identical with those of smg p25A GDI. Among the 83 residues, 2 amino acids were different between rat liver 24K G GDI and bovine brain smg p25A GDI. These results indicate that there is a specific regulatory protein for 24K G, 24K G GDI, in rat liver cytosol and that 24K G GDI has close similarity to smg p25A GDI.  相似文献   

11.
Comparative 19F NMR studies were performed on rat cellular retinol-binding protein (CRBP) and cellular retinol-binding protein II (CRBPII) to better understand their role in intracellular retinol metabolism within the polarized absorptive epithelial cells (enterocytes) of the intestine. Efficient incorporation of 6-fluorotryptophan (6-FTrp) into these homologous proteins was achieved by growing a tryptophan auxotroph of Escherichia coli, harboring prokaryotic expression vectors with either a full-length rat CRBPII or CRBP cDNA on defined medium supplemented with the analog. It is possible to easily distinguish resonances corresponding to 6-FTrp-apoCRBP, 6-FTrp-CRBP-retinol (or retinal), 6-FTrp-apoCRBPII, and 6-FTrp-CRBPII-retinol (or retinal). We were thus able to use 19F NMR spectroscopy to monitor transfer of all-trans-retinol and all-trans-retinal between CRBPII and CRBP in vitro. Retinol complexed to CRBPII is readily transferred to CRBP, whereas retinol complexed to CRBP is not readily transferred to CRBPII. We estimated that the Kd for CRBP-retinol is approximately 100-fold less than the Kd for CRBPII-retinol. Transfer of all-trans-retinal occurs readily from CRBPII to CRBP and from CRBP to CRBPII. Results from competitive binding studies with retinol and retinal indicated that there is a much larger difference between the affinities of CRBP for retinol and retinal than between the affinities of CRBPII for these two ligands. However, the differences in binding specificities reflect differences in how the two proteins interact with retinol, rather than with retinal. 19F NMR analysis of recombinant isotopically labeled proteins represents a sensitive new and useful method for monitoring retinoid flux between the CRBPs in vitro.  相似文献   

12.
13.
Cellular retinol binding protein II (CRBP II) is an abundant, 134-residue protein present in the small intestinal epithelium. It is thought to participate in the uptake and/or intracellular metabolism of vitamin A. We have isolated and sequenced the rat CRBP II gene. Its four exons span 0.65 kilobases and are interrupted by three introns with an aggregate length of 19.5 kilobases. Southern blot hybridization analysis indicated that this gene is highly conserved in rats, mice, and humans. CRBP II belongs to a protein family that contains eight known members. Computer-assisted comparative sequence analyses indicated that a region of internal homology spans its first two exons and that oligopeptide domains specified by these first two exons exhibit significant homology to all other family members as well as to a portion of the all-trans-retinol binding domain that has previously been defined in serum retinol binding protein. The CRBP II gene was mapped in mice using recombinant inbred strains and restriction fragment length polymorphisms. It is located on chromosome 9 within 5.3 centimorgans of the phosphoglucomutase-3 locus and is closely linked (within 3.0 centimorgans) to the gene specifying a highly homologous intracellular retinol binding protein known as CRBP. Mouse-human somatic cell hybrids were used to determine that both the CRBP and CRBP II genes are located on human chromosome 3.  相似文献   

14.
J A Finlay  M Strom  D E Ong  H F DeLuca 《Biochemistry》1990,29(20):4914-4921
Previously we purified and sequenced an 18-kDa chick duodenal protein that was modulated by 1,25-dihydroxyvitamin D3. The N-terminus of this protein has striking sequence homology to cellular retinol binding protein type II (CRBP II). Furthermore, this purified chick protein binds retinol. Antibodies have now been generated to the chick protein and used for immunoblot analysis to demonstrate that the chick protein has molecular weight, tissue distribution, and subcellular localization similar to rat CRBP II. These antibodies also cross-reacted with rat CRBP II. Antibodies to rat CRBP II cross-react with the chick protein. Northern analysis using a cDNA probe for rat CRBP II showed a single 860 base pair mRNA in both chick and rat intestinal RNA preparations. These results demonstrate that the 1,25-dihydroxyvitamin D3 modulated protein in chick embryonic organ culture is chick CRBP II. Pulse-chase experiments in chick embryonic duodenal organ culture strongly suggest that 1,25-dihydroxyvitamin D3 markedly decreases the synthesis of CRBP II, while not changing the degradation rate. The concentration of 1,25-dihydroxyvitamin D3 required for the decrease in CRBP II synthesis is approximately that required to stimulate calcium uptake into embryonic chick duodenal organ cultures.  相似文献   

15.
Retinol esterification was examined in microsomes from rat liver and lactating mammary gland as a function of the form of retinol substrate, dependence on fatty acyl CoA, and sensitivity to phenylmethylsulfonyl fluoride (PMSF). Retinol bound to cellular retinol-binding protein (CRBP) or dispersed in solvent was esterified in a fatty acyl CoA-independent, PMSF-sensitive reaction, consistent with lecithin:retinol acyltransferase (LRAT) activity. LRAT activity exhibited the same Km (2 microM retinol) between tissues but a higher Vmax in liver as compared to that in mammary gland (47 vs 8 pmol/min/mg microsome protein, respectively). Solvent-dispersed retinol was also esterified in a fatty acyl CoA-dependent, PMSF-resistant reaction, consistent with acyl CoA:retinol acyltransferase (ARAT) activity. Retinol bound to CRBP was not a good substrate for this reaction. ARAT activity displayed a similar Vmax (300 pmol/min/mg microsome protein) between tissues but Km values of 15 and 5 microM for retinol and fatty acyl CoA in mammary gland as compared to 30 and 25 microM, respectively, in the liver. Thus, when substrate was near or below Km, retinol esterification occurred predominantly by LRAT in the liver and ARAT in the mammary gland, respectively. The concentration of CRBP in the cytosol, determined by Western blotting, was approximately 2 microM in the liver but was almost nondetectable in the mammary gland. These data suggest that retinol esterification is regulated via different mechanisms in liver and mammary gland and support a specific role for CRBP in the liver.  相似文献   

16.
Explants of 19- to 20-day fetal rat liver synthesize polypeptides biochemically and immunologically related to the well characterized somatomedin (insulin-like growth factor) BRL-MSA, multiplication-stimulating activity. Fetal MSA was purified from media conditioned by fetal liver explants by chromatography on Sephadex G-75 under acid conditions. Partially purified fetal MSA: 1) inhibited the binding of BRL-MSA to the MSA receptor of rat liver plasma membranes, to somatomedin-binding proteins from rat serum, and to rabbit anti-BRL-MSA serum; 2) had a molecular weight of 4,500 to 12,500 determined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate; 3) stimulated the incorporation of [3H]thymidine into the DNA of chick embryo fibroblasts and induced cell multiplication; 4) stimulated glucose oxidation in rat adipocytes and weakly inhibited the binding of insulin to the insulin receptors of IM-9 lymphocytes; and 5) stimulated sulfate uptake in costal cartilage from hypophysectomized rats. These activities were associated with the same molecular species in fetal MSA preparations following disc acrylamide electrophoresis and co-migrated with active BRL-MSA peptides.  相似文献   

17.
A one-step procedure to detect cellular [3H]retinol and [3H]retinoic acid binding proteins (CRBP and CRABP) from rat testis cytosolic extract was devised. The procedure is based on anion-exchange high-performance liquid chromatography of the cytosolic fraction on columns of Mono Q, which permits elution of CRABP and CRBP at 12 and 22 min, respectively.  相似文献   

18.
The primary structure of rat liver cellular retinol-binding protein   总被引:10,自引:0,他引:10  
The complete amino acid sequence of a cellular retinol-binding protein (CRBP) has been determined for the first time. The primary structure of rat liver CRBP was elucidated by analyses of cyanogen bromide fragments and peptides obtained by tryptic and thermolytic digestions. The single polypeptide chain of rat CRBP consists of 134 amino acid residues. Under reducing conditions, CRBP exists as a monomer, but, in the absence of reducing agents, dimers and multimers of the protein emerge. This is explained by the observation that CRBP contains 3 cysteines, one of which seems to be highly reactive. Whether CRBP contains a disulfide bond is not yet established. The present data extend the previously described homology between CRBP and a family of low molecular weight proteins, all members of which may bind hydrophobic ligands. Since some of these proteins apparently display intracellular transport functions, a similar role for CRBP is envisaged.  相似文献   

19.
《The Journal of cell biology》1984,98(5):1696-1704
The immunocytochemical localization of cellular retinol-binding protein (CRBP), of plasma retinol-binding protein (RBP), and of plasma transthyretin (TTR) was studied in rat liver and kidney. The studies employed normal rats, retinol-deficient rats, and rats fed excess retinol. Antisera were prepared in rabbits against purified rat CRBP, RBP, and TTR. The primary antibodies and goat anti-rabbit IgG were purified by immunosorbent affinity chromatography, using the respective pure antigen coupled to Sepharose as the immunosorbent. This procedure effectively removed cross-reactive and heterophile antibodies, which permitted the specific staining and localization of each antigen by the unlabeled peroxidase-antiperoxidase method. CRBP was found to be localized in two cell types in the liver, the parenchymal cells and the fat-storing cells. Diffuse cytoplasmic staining for CRBP was seen in all the parenchymal cells. Much more intense staining for CRBP was seen in the fat-storing cells. The prominence of the CRBP-positive fat- storing cells changed markedly with vitamin A status. Thus, these cells were most prominent, and appeared most numerous, in liver from rats fed excess retinol. Both RBP and TTR were localized within liver parenchymal cells. The intensity of RBP staining increased markedly in retinol-deficient rat liver, consistent with previous biochemical observations. With the methods employed, specific staining for RBP or TTR was not seen in cells other than the parenchymal cells. In the kidney, all three proteins (CRBP, RBP, and TTR) were localized in the proximal convoluted tubules of the renal cortex. Staining for RBP was much more intense in normal kidney than in kidney from retinol- deficient rats. These findings reflect the fact that RBP in the tubules represents filtered and reabsorbed RBP. The pattern of specific staining for CRBP among the various tubules was very similar to that seen for RBP on adjacent, serial sections of kidney. The function of CRBP in the kidney is not known.  相似文献   

20.
The binding of deoxycholate and dodecyl sulfate to the mouse and bovine myelin basic proteins and two peptide fragments, obtained by cleavage of the bovine basic protein at its single tryptophan residue, was examined. Complete equilibrium binding isotherms for both detergents were obtained by examining their binding to each of the polypeptides immobilized on agarose. The bulk of the binding of dodecyl sulfate was found to be highly cooperative, and at saturation all four polypeptides bound far more detergent than globular, water-soluble proteins. The sum of the dodecyl sulfate bound by each of the two bovine basic protein cleavage fragments was almost twice that bound by the intact protein at saturation, suggesting that cleavage of the bovine basic protein exposes sites for additional binding of dodecyl sulfate. At pH values below pH 8.0, an additional cooperative transition was observed below the critical micelle concentration of sodium dodecyl sulfate in the binding isotherms of all four polypeptides. The midpoint of this transition corresponded to an apparent pK of approximately 5.5; however, the destruction of 90% of the histidine residues in the bovine basic protein had no effect on this transition. At pH 9.2 and moderate ionic strength (I = 0.1), the bulk of the binding of deoxycholate to the mouse and bovine basic proteins occurred at and above the critical micelle concentration of the detergent; and saturation values of deoxycholate binding to these two proteins were considerably higher than that reported for globular, water-soluble proteins. In marked contrast to the results with dodecyl sulfate, neither cleavage fragment was observed to bind deoxycholate. The results suggest that the higher ordered structure of the bovine basic protein may play an important role in the binding of anionic amphiphiles to the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号