首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The forward light scatter intensity of bacteria analyzed by flow cytometry varied with their dry mass, in accordance with theory. A standard curve was formulated with Rayleigh-Gans theory to accommodate cell shape and alignment. It was calibrated with an extinction-culture isolate of the small marine organism Cycloclasticus oligotrophus, for which dry weight was determined by CHN analysis and 14C-acetate incorporation. Increased light scatter intensity due to formaldehyde accumulation in preserved cells was included in the standard curve. When differences in the refractive indices of culture media and interspecies differences in the effects of preservation were taken into account, there was agreement between cell mass obtained by flow cytometry for various bacterial species and cell mass computed from Coulter Counter volume and buoyant density. This agreement validated the standard curve and supported the assumption that cells were aligned in the flow stream. Several subpopulations were resolved in a mixture of three species analyzed according to forward light scatter and DNA-bound DAPI (4′,6-diamidino-2-phenylindole) fluorescence intensity. The total biomass of the mixture was 340 μg/liter. The lowest value for mean dry mass, 0.027 ± 0.008 pg/cell, was for the subpopulation of C. oligotrophus containing cells with a single chromosome. Calculations from measurements of dry mass, Coulter Counter volume, and buoyant density revealed that the dry weight of the isolate was 14 to 18% of its wet weight, compared to 30% for Escherichia coli. The method is suitable for cells with 0.005 to about 1.2 pg of dry weight at concentrations of as low as 103 cells/ml and offers a unique capability for determining biomass distributions in mixed bacterial populations.  相似文献   

2.
We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell’s buoyant mass sequentially in an H2O-based fluid and a D2O-based fluid. Rapid exchange of intracellular H2O for D2O renders the cell’s water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell’s dry material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and volume. We then focused on cellular dry density – the average density of all cellular biomolecules, weighted by their relative abundances. Given that densities vary across biomolecule types (RNA, DNA, protein), we investigated whether we could detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell.  相似文献   

3.
Aims: To apply specific collection techniques and spectroscopy to differentiate between live and dead Escherichia coli O157:H7 cells, as well as cells subjected to various inactivation treatments, including heat, salt, UV, antibiotics and alcohol. Methods and Results: Fourier transform‐infrared (FT‐IR) spectroscopy was used to analyse E. coli O157:H7 cells, after filtration or immunomagnetic collection. Partial least squares analysis of the spectra quantified live E. coli O157:H7 in the presence of dead cells with an R2 > 0·996. Canonical variate analysis (CVA) not only differentiated between spectra of 100% dead and 100% live cells but also between 1% live : 99% dead and 100% dead. CVA using principal components also differentiated between the spectra of the differentially treated cells at a 95% confidence level, and Cooman plots showed clear separation between clusters of spectra of bacteria exposed to the different inactivation treatments. Mahalanobis distances (MD) corroborated the results of CVA. Conclusions: These results demonstrated the effectiveness of rapid cell collection and FT‐IR spectroscopy techniques to differentiate between live and dead E. coli O157:H7 cells. Significance and Impact of the Study: This technique has potential applications for use with foods subjected to various inactivation treatments.  相似文献   

4.
Kinetics of cell death and the production of dissolved organic carbon (DOC) were investigated in Anabaena flos-aquae (Lyngb.) Bréb grown on three different N sources (N2nitrate, and ammonium) in a phosphorus (P)-limited chemostat. The fraction of live cells in the total population increased as growth rate increased with decreasing P limitation. Cell death was less in nitrate and ammonium media than in N2. The specific death rate (γ), when calculated as the slope ofv?1x vs. D?1, where vxand D are live cell fraction (or cell viability) and dilution rate, respectively, was 0. 0082 day?1 in N2and 0.0042 day?1 in nitrate. The slope of the plot in ammonium culture was not significant; however, the value of the live cell fraction was within the range for the NO?3culture. The fraction of live vegetative cells in N2 culture was constant at all growth rates and the increase in the overall live cell fraction with growth rate was due entirely to an increase in live heterocysts. Live heterocysts comprised 3.5% of the total cells at a growth rate of 0.25 day?1 and increased to 6.3% at 0.75 day?1 with the ratio of live heterocysts to live vegetative cells linearly increasing with growth rate. The fraction of live vegetative cells was invariant in nitrate cultures us in N2cultures. The live heterocysts fraction also increased with growth rate in nitrate cultures, along with the live heterocysts : live vegetative cells ratio, but the level was lower than in N2cultures. DOC released from dead cells increased inversely with growth rate in N2from 36.4% of the total DOC at a growth rate of 0.75 day?1 to 54.15% at 0.25 day?1. The contribution of cell death to the total DOC production in nitrate and ammonium media was significantly less than that under N2DOC from dead cells consisted mainly of high-molecular-weight compounds, whereas DOC excreted from live cells was largely of low molecular weight.  相似文献   

5.
In previous studies, we had shown that the buoyant density ofEscherichia coli is determined by the osmolarity of the growth medium by varying the osmolarity of the medium with NaCl or sucrose. However, the buoyant density of the cells always exceeded that of the growth medium. Here we determined the effect of medium with a buoyant density greater than the expected buoyant density of cells by adding Nycodenz to Luria broth. Percoll gradients of cells were analyzed by laser light scattering. The buoyant density for 125- and 375-mOsM-grown cells was 0.002 g/ml and 0.003 g/ml more, respectively, for cells grown in the presence of Nycodenz than those grown without Nycodenz, while the buoyant density of 250-mOsM-grown cells was 0.005 g/ml less for cells grown in the presence of Nycodenz than those grown without Nycodenz. Cells grown in 500-mOsM medium with or without Nycodenz had the same buoyant density. the buoyant density of cultures grown in defined medium was the same as those grown in rich medium, with only the medium osmolarity correlating to buoyant density. We conclude from these experiments that neither buoyant density nor chemical make-up of the medium determines the buoyant density of cells grown in that medium. Only the medium osmolarity determines cell buoyant density, suggesting thatE. coli has no mechanisms to sense buoyant density.  相似文献   

6.
Flow cytometry was used to study the effect of the bacteriocin leucocin B-TA11a on Listeria (L.) monocytogenes. Mixed proportions of dead and live control populations were analyzed by flow cytometry to determine detection limits of the Dead/Live Baclight Bacterial Viability KitTM. High correlations for flow cytometric detection of defined proportions of live or dead cells in mixtures between 10 and 100% of dead (r2 = 0.97) or live (r2 = 0.99) cells were obtained. However, mixtures containing less than 10% of either live or dead control cells gave correlations below 0.72. The growth of L. monocytogenes in the absence and presence of leucocin B-TA11a was analyzed by flow cytometry with Baclight, plate counts, and optical density measurements. Although leucocin B-TA11a initially inhibited listerial growth, the uptake of both Baclight dyes suggested that cells remained viable but became leaky, possibly indicating bacteriocin-induced pore formation in the target membranes. Received: 30 June 1997 / Accepted: 20 October 1997  相似文献   

7.
Surfactants are extremely important agents to clean and sanitize various environments. Their biocidal activity is a key factor determined by the interactions between amphiphile structure and the target microbial cells. The object of this study was to analyze the interactions between four structural variants of N-alkyltropinium bromide surfactants with the Gram negative Escherichia coli and the Gram positive Listeria innocua bacteria. Microbiological and conductometric methods with a previously described FTIR bioassay were used to assess the metabolomic damage exerted by these compounds. All surfactants tested showed more biocidal activity in L. innocua than in E. coli. N-tetradecyltropinium bromide was the most effective compound against both species, while all the other variants had a reduced efficacy as biocides, mainly against E. coli cells. In general, the most prominent metabolomic response was observed for the constituents of the cell envelope in the fatty acids (W1) and amides (W2) regions and at the wavenumbers referred to peptidoglycan (W2 and W3 regions). This response was particularly strong and negative in L. innocua, when cells were challenged by N-tetradecyltropinium bromide, and by the variant with a smaller head and a 12C tail (N-dodecylquinuclidinium bromide). Tail length was critical for microbial inhibition especially when acting against E. coli, maybe due the complex nature of Gram negative cell envelope. Statistical analysis allowed us to correlate the induced mortality with the metabolomic cell response, highlighting two different modes of action. In general, gaining insights in the interactions between fine structural properties of surfactants and the microbial diversity can allow tailoring these compounds for the various operative conditions.  相似文献   

8.
Buoyant density gradient centrifugation has been used to separate bacteria from complex food matrices, as well as to remove compounds that inhibit rapid detection methods, such as PCR, and to prevent false-positive results due to DNA originating from dead cells. Applying a principle of buoyant density gradient centrifugation, we developed a method for rapid separation and concentration following filtration and low- and high-speed centrifugation, as well as flotation and sedimentation buoyant density centrifugation, for 12 food-borne pathogens (Salmonella enterica, Escherichia coli, Yersinia enterocolitica, Campylobacter jejuni, Vibrio cholerae O139, Vibrio parahaemolyticus O3K6, Vibrio vulnificus, Providencia alcalifaciens, Aeromonas hydrophila, Bacillus cereus, Staphylococcus aureus, and Clostridium perfringens) in 13 different food homogenates. This method can be used prior to real-time quantitative PCR (RTi-qPCR) and viable-cell counting. Using this combined method, the target organisms in the food samples theoretically could be concentrated 250-fold and detected at cell concentrations as low as 101 to 103 CFU/g using the RTi-qPCR assay, and amounts as small as 100 to 101 CFU/g could be isolated using plate counting. The combined separation and concentration methods and RTi-qPCR confirmed within 3 h the presence of 101 to 102 CFU/g of Salmonella and C. jejuni directly in naturally contaminated chicken and the presence of S. aureus directly in remaining food items in a poisoning outbreak. These results illustrated the feasibility of using these assays for rapid inspection of bacterial food contamination during a real-world outbreak.  相似文献   

9.
Real-time PCR is fast, sensitive, specific, and can deliver quantitative data; however, two disadvantages are that this technology is sensitive to inhibition by food and that it does not distinguish between DNA originating from viable, viable nonculturable (VNC), and dead cells. For this reason, real-time PCR has been combined with a novel discontinuous buoyant density gradient method, called flotation, in order to allow detection of only viable and VNC cells of thermotolerant campylobacters in chicken rinse samples. Studying the buoyant densities of different Campylobacter spp. showed that densities changed at different time points during growth; however, all varied between 1.065 and 1.109 g/ml. These data were then used to develop a flotation assay. Results showed that after flotation and real-time PCR, cell concentrations as low as 8.6 × 102 CFU/ml could be detected without culture enrichment and amounts as low as 2.6 × 103 CFU/ml could be quantified. Furthermore, subjecting viable cells and dead cells to flotation showed that viable cells were recovered after flotation treatment but that dead cells and/or their DNA was not detected. Also, when samples containing VNC cells mixed with dead cells were treated with flotation after storage at 4 or 20°C for 21 days, a similar percentage resembling the VNC cell fraction was detected using real-time PCR and 5-cyano-2,3-ditolyl tetrazolium chloride-4′,6′-diamidino-2-phenylindole staining (20% ± 9% and 23% ± 4%, respectively, at 4°C; 11% ± 4% and 10% ± 2%, respectively, at 20°C). This indicated that viable and VNC Campylobacter cells could be positively selected and quantified using the flotation method.  相似文献   

10.
5-Bromodeoxyuridine (BUdR)-resistant cells were obtained from N-methyl-N′-nitro-N-nitrosoguanidine (NTG)-treated soybean protoplasts and cultured in liquid nutrient medium containing BUdR (20 μg/ml) and uridine (100 μg/ml). Addition of uridine to the medium improved growth of the BUdR-resistant cells. The growth of BUdR-resistant cells was partly inhibited when hypoxanthine, aminopterine, glycine and thymidine were added to the medium. Both BUdR-resistant and BUdR-sensitive cells exhibited thymidine kinase activity. CsCl density gradient analyses showed that the DNA of BUdR-resistant cells, which were cultured in the presence of BUdR, had a buoyant density of 1.703 g/ml, while the DNA of the parental soybean cells grown without BUdR had a buoyant density of 1.692 g/ml. Uptake of 3H-thymidine or 14C-BUdR by the cells occurred in both BUdR-resistant and BUdR-sensitive cells. CsCl density gradient patterns of labelled DNA also demonstrated that 14C-BUdR and 3H-thymidine were incorporated into the DNA of BUdR-resistant cells, as well as into that of BUdR-sensitive cells.  相似文献   

11.
The ratios of satellite deoxyribonucleic acid components to chromosomal deoxyribonucleic acid in Euglena gracilis Z were measured by analytical density gradient ultracentrifugation. Chloroplast deoxyribonucleic acid with a buoyant density of 1.685 g/cm3 exhibited a constant ratio to chromosomal deoxyribonucleic acid during exponential growth and increased twofold as the culture reached the end of the exponential growth phase. The quantity of a satellite deoxyribonucleic acid with a buoyant density of 1.691 g/cm3 was not sufficient to measure the ratio to chromosomal deoxyribonucleic acid during exponential growth but increased to approximately equal the quantity of chloroplast deoxyribonucleic acid as the culture approached the end of the exponential growth phase. The quantity of a deoxyribonucleic acid component with a buoyant density of 1.700 g/cm3 was not sufficient to measure the ratio to chromosomal deoxyribonucleic acid during exponential growth but represented approximately one-third of the total deoxyribonucleic acid as the culture entered the stationary phase of growth.  相似文献   

12.
The viability of the polychlorinated biphenyl-degrading bacterium Comamonas testosteroni TK102 was assessed by flow cytometry (FCM) with the fluorogenic ester Calcein-AM (CAM) and the nucleic acid dye propidium iodide (PI). CAM stained live cells, whereas PI stained dead cells. When double staining with CAM and PI was performed, three physiological states, i.e., live (calcein positive, PI negative), dead (calcein negative, PI positive), and permeabilized (calcein positive, PI positive), were detected. To evaluate the reliability of this double-staining method, suspensions of live and dead cells were mixed in various proportions and analyzed by FCM. The proportion of dead cells measured by FCM directly correlated with the proportion of dead cells in the sample (y = 0.9872 x + 0.18; R2 = 0.9971). In addition, the proportion of live cells measured by FCM inversely correlated with the proportion of dead cells in the sample (y = −0.9776 x + 98.36; R2 = 0.9962). The proportion of permeabilized cells was consistently less than 2%. These results indicate that FCM in combination with CAM and PI staining is rapid (≤1 h) and distinguishes correctly among live, dead, and permeabilized cells.  相似文献   

13.
Nisin A and polymyxin B were tested alone and in combination in order to test their antagonism against Listeria innocua HPB13 and Escherichia coli RR1, respectively. While the combination of both antibacterial substances was synergistically active against both target bacteria, nisin A alone did not show any inhibition of E. coli RR1. The nisin A/polymyxin B combination at 1.56/2.5 μg ml?1 caused lysis of about 35.86 ± 0.35 and 73.36 ± 0.14% of L. innocua HPB13 cells after 3 and 18 h, respectively. Polymyxin B at 0.12 μg ml?1 and nisin A/polymyxin B at 4.64/0.12 μg ml?1 decreased the numbers of viable E. coli RR1 cells by about 0.23 and 0.65 log10 CFU ml?1, respectively, compared to the control. Our data suggest that the concentration of nisin A required for the effective control of pathogenic strains Listeria spp. could be lowered considerably by combination with polymyxin B. The use of lower concentrations of nisin A or polymyxin B should slow the emergence of bacterial populations resistant to these agents.  相似文献   

14.
To assess the quantitative and qualitative parameters of pre-cut posterior corneal lamellae for Descemet membrane endothelial keratoplasty with a stromal rim (DMEK-S) prepared manually in the Ocular Tissue Bank Prague. All 65 successfully prepared pre-cut posterior corneal lamellae provided for grafting during a 2-year period were analyzed retrospectively. The lamellae, consisting of a central zone of endothelium-Descemet membrane surrounded by a supporting peripheral stromal rim, were prepared manually from corneoscleral buttons having an endothelial cell density higher than 2,500 cells/mm2. The live endothelial cell density, the percentage of dead cells, the hexagonality and the coefficient of variation were assessed before and immediately after preparation as well as after 2 days of organ culture storage at 31 °C. Altogether, the endothelium of 57 lamellae was assessed. Immediately after preparation, the mean live endothelial cell density was 2,835 cells/mm2 and, on average, 1.8 % of dead cells were found. After 2 days of storage, the cell density decreased significantly to 2,757 cells/mm2 and the percentage of dead cells to 1.0 %. There was a significant change in the mean hexagonality and the coefficient of variation after lamellar preparation and subsequent storage. The amount of tissue wasted during the preparation was 23 %. The endothelial cell density of posterior corneal lamellae sent for DMEK-S was higher than 2,700 cells/mm2 in average with a low percentage of dead cells; 65 pre-cut tissues were used for grafting during a 2-year period.  相似文献   

15.
Competent Escherichia coli cells are commonly used in bacterial transformation owing to its high permeability for bioorganic macromolecules like plasmid DNA. However, the mass transfer property of competent E. coli cell has not fully investigated. In the present study, mass transfer coefficients of competent and intact E. coli cells in deionized water were evaluated by impedimetric analysis of the release of cytoplasmic compounds. Because competent cells have a higher permeability after chemical treatment, the lumped mass transfer coefficient of a competent cell was approximately 6.5 times larger than that of an intact cell at room temperature. Release of cytoplasmic components was accelerated at an elevated temperature of 42?°C, which is the heat shock temperature used during bacterial transformation. At this elevated temperature, assessed lumped mass transfer coefficients of intact and competent E. coli cells were 9.28?×?10?4?min?1 and 97.10?×?10?4?min?1, respectively. Significant increase in the mass transfer coefficient of the competent cell is caused by cytolysis of cells. The double layer capacitances were also assessed from the electrochemical spectra confirming the enhanced ion release from E. coli cells and rupture of the competent cell under prolonged exposure at the elevated temperature. Impedimetric detection of the ion release with analyses using an equivalent circuit model provides a method to evaluate mass transfer properties of biomolecules.  相似文献   

16.
The effect of selenite on growth kinetics, the ability of cultures to reduce selenite, and the mechanism of detoxification of selenium were investigated by using Rhodospirillum rubrum. Anoxic photosynthetic cultures were able to completely reduce as much as 1.5 mM selenite, whereas in aerobic cultures a 0.5 mM selenite concentration was only reduced to about 0.375 mM. The presence of selenite in the culture medium strongly affected cell division. In the presence of a selenite concentration of 1.5 mM cultures reached final cell densities that were only about 15% of the control final cell density. The cell density remained nearly constant during the stationary phase for all of the selenite concentrations tested, showing that the cells were not severely damaged by the presence of selenite or elemental selenium. Particles containing elemental selenium were observed in the cytoplasm, which led to an increase in the buoyant density of the cells. Interestingly, the change in the buoyant density was reversed after selenite reduction was complete; the buoyant density of the cells returned to the buoyant density of the control cells. This demonstrated that R. rubrum expels elemental selenium across the plasma membrane and the cell wall. Accordingly, electron-dense particles were more numerous in the cells during the reduction phase than after the reduction phase.  相似文献   

17.
This study investigates the effect of citral on growth and on the occurrence of sublethal damage in Listeria innocua Serovar 6a (CECT 910) and Listeria monocytogenes Serovar 4b (CECT 4032) cells that were exposed to citral as a natural antimicrobial agent. Two initial inoculum concentrations were considered in this investigation: 102 and 106 cfu/mL. Citral exhibited antilisterial activity against L. innocua and L. monocytogenes, and the observed effects were dependent on the concentration of citral present in the culture medium (0, 0.150 and 0.250 μL/mL) (p ≤ 0.05). L. innocua had a shorter lag phase than L. monocytogenes, and the two species had nearly identical maximum specific growth rates. These results indicate that L. innocua could be used as surrogate for L. monocytogenes when testing the effects of this antimicrobial. Significant differences in the lag phase and growth rate were observed between the small and large inoculum concentration (p ≤ 0.05). Citral-treated L. innocua and L. monocytogenes that were recovered on selective medium (i.e., TSA-YE-SC) had a shorter lag phase and a higher maximum specific growth rate than cells that were recovered on non-selective medium (i.e., TSA-YE) (p ≤ 0.05). This result suggests that damage occurs at sublethal concentrations of citral.  相似文献   

18.
Scavenging (feeding on dead prey) has been demonstrated across a number of spider families, yet the implications of feeding on dead prey for the growth and development of individuals and population is unknown. In this study we compare the growth, development, and predatory activity of two species of spiders that were fed on live and dead prey. Pardosa astrigera (Lycosidae) and Hylyphantes graminicola (Lyniphiidae) were fed live or dead fruit flies, Drosophila melanogaster. The survival of P. astrigera and H. graminicola was not affected by prey type. The duration of late instars of P. astrigera fed dead prey were longer and mature spiders had less protein content than those fed live prey, whereas there were no differences in the rate of H. graminicola development, but the mass of mature spiders fed dead prey was greater than those fed live prey. Predation rates by P. astrigera did not differ between the two prey types, but H. graminicola had a higher rate of predation on dead than alive prey, presumably because the dead flies were easier to catch and handle. Overall, the growth, development and reproduction of H. graminicola reared with dead flies was better than those reared on live flies, yet for the larger P. astrigera, dead prey may suit smaller instars but mature spiders may be best maintained with live prey. We have clearly demonstrated that dead prey may be suitable for rearing spiders, although the success of the spiders fed such prey appears size- and species specific.  相似文献   

19.
Biosolids result from treatment of sewage sludge to meet jurisdictional standards, including pathogen reduction. Once government regulations are met, materials can be applied to agricultural lands. Culture-based methods are used to enumerate pathogen indicator microorganisms but may underestimate cell densities, which is partly due to bacteria existing in a viable but non-culturable physiological state. Viable indicators can also be quantified by real-time polymerase chain reaction (qPCR) used with propidium monoazide (PMA), a dye that inhibits amplification of DNA found extracellularly or in dead cells. The objectives of this study were to test an optimized PMA-qPCR method for viable pathogen detection in wastewater solids and to validate it by comparing results to data obtained by conventional plating. Reporter genes from genetically marked Pseudomonas sp. UG14Lr and Agrobacterium tumefaciens 542 cells were spiked into samples of primary sludge, and anaerobically digested and Lystek-treated biosolids as cell-free DNA, dead cells, viable cells, and mixtures of live and dead cells, followed by DNA extraction with and without PMA, and qPCR. The protocol was then used for Escherichia coli quantification in the three matrices, and results compared to plate counts. PMA-qPCR selectively detected viable cells, while inhibiting signals from cell-free DNA and DNA found in membrane-compromised cells. PMA-qPCR detected 0.5–1 log unit more viable E. coli cells in both primary solids and dewatered biosolids than plate counts. No viable E. coli was found in Lystek-treated biosolids. These data suggest PMA-qPCR may more accurately estimate pathogen cell numbers than traditional culture methods.  相似文献   

20.
While the nuclei of many diverse types of tissue can be purified by centrifugation through dense sucrose solutions, Xenopus laevis embryo and liver nuclei present special purification problems due to the presence of large numbers of melanosomes in embryo and liver cells. These melanosomes were removed by isopycnic centrifugation in Metrizamide gradients. In Metrizamide, embryo nuclei banded at an average buoyant density of ρC = 1.288 ± 0.003 g/cm3. Liver nuclei separated into two peaks, one containing nonparenchymal cell nuclei with an average buoyant density of ρC = 1.274 ± 0.003 g/cm3 and the other peak containing parenchymal cell nuclei with an average buoyant density of ρC = 1.284 ± 0.001 g/cm3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号