首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Organogenesis》2013,9(1):86-95
Cystic kidney diseases can cause end stage renal disease, affecting millions of individuals worldwide. They may arise early or later in life, are characterized by a spectrum of symptoms and can be caused by diverse genetic defects. The primary cilium, a microtubule-based organelle that can serve as a signaling antenna, has been demonstrated to have a significant role in ensuring correct kidney development and function. In the kidney, one of the signaling pathways that requires the cilium for normal development is Wnt signaling. In this review, the roles of primary cilia in relation to canonical and non-canonical Wnt/PCP signaling in cystic renal disease are described. The evidence of the associations between cilia, Wnt signaling and cystic renal disease is discussed and the significance of planar cell polarity-related mechanisms in cystic kidney disease is presented. Although defective Wnt signaling is not the only cause of renal disease, research is increasingly highlighting its importance, encouraging the development of Wnt-associated diagnostic and prognostic tools for cystic renal disease.  相似文献   

2.
Nephronophthisis (NPH) is an autosomal-recessive cystic kidney disease and represents the most common genetic cause for end-stage renal disease in children and adolescents. It can be caused by the mutation of genes encoding for the nephrocystin proteins (NPHPs). All NPHPs localize to primary cilia, classifying this disease as a "ciliopathy." The primary cilium is a critical regulator of several cell signaling pathways. Cystogenesis in the kidney is thought to involve overactivation of canonical Wnt signaling, which is negatively regulated by the primary cilium and several NPH proteins, although the mechanism remains unclear. Jade-1 has recently been identified as a novel ubiquitin ligase targeting the canonical Wnt downstream effector β-catenin for proteasomal degradation. Here, we identify Jade-1 as a novel component of the NPHP protein complex. Jade-1 colocalizes with NPHP1 at the transition zone of primary cilia and interacts with NPHP4. Furthermore, NPHP4 stabilizes protein levels of Jade-1 and promotes the translocation of Jade-1 to the nucleus. Finally, NPHP4 and Jade-1 additively inhibit canonical Wnt signaling, and this genetic interaction is conserved in zebrafish. The stabilization and nuclear translocation of Jade-1 by NPHP4 enhances the ability of Jade-1 to negatively regulate canonical Wnt signaling. Loss of this repressor function in nephronophthisis might be an important factor promoting Wnt activation and contributing to cyst formation.  相似文献   

3.
For more than a decade, evidence has accumulated linking dysfunction of primary cilia to renal cystogenesis, yet molecular mechanisms remain undefined. The pathogenesis of renal cysts is complex, involving multiple cellular aberrations and signaling pathways. Adding to this complexity, primary cilia exhibit multiple roles in a context‐dependent manner. On renal epithelial cells, primary cilia act as mechanosensors and trigger extracellular Ca2+ influx in response to laminar fluid flow. During mammalian development, primary cilia mediate the Hedgehog (Hh), Wnt, and Notch pathways, which control cell proliferation and differentiation, and tissue morphogenesis. Further, experimental evidence suggests the developmental state of the kidney strongly influences renal cystic disease. Thus, we review evidence for regulation of Ca2+ and cAMP, key molecules in renal cystogenesis, at the primary cilium, the role of Hh, Wnt, and Notch signaling in renal cystic disease, and the interplay between these developmental pathways and Ca2+ signaling. Indeed if these developmental pathways influence renal cystogenesis, these may represent novel therapeutic targets that can be integrated into a combination therapy for renal cystic disease. Birth Defects Research (Part C) 102:159–173, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Mutation of the X-linked oral-facial-digital syndrome type 1 (OFD1) gene is embryonic lethal in males and results in craniofacial malformations and adult onset polycystic kidney disease in females. While the OFD1 protein localizes to centriolar satellites, centrosomes and basal bodies, its cellular function and how it relates to cystic kidney disease is largely unknown. Here, we demonstrate that OFD1 is assembled into a protein complex that is localized to the primary cilium and contains the epidermal growth factor receptor (EGFR) and domain organizing flotillin proteins. This protein complex, which has similarity to a basolateral adhesion domain formed during cell polarization, also contains the polycystin proteins that when mutant cause autosomal dominant polycystic kidney disease (ADPKD). Importantly, in human ADPKD cells where mutant polycystin-1 fails to localize to cilia, there is a concomitant loss of localization of polycystin-2, OFD1, EGFR and flotillin-1 to cilia. Together, these data suggest that polycystins are necessary for assembly of a novel flotillin-containing ciliary signaling complex and provide a molecular rationale for the common renal pathologies caused by OFD1 and PKD mutations.  相似文献   

5.
Primary cilia project from the surface of most vertebrate cells and are thought to be sensory organelles. Defects in primary cilia lead to cystic kidney disease, although the ciliary mechanisms that promote and maintain normal renal function remain incompletely understood. In this work, we generated a floxed allele of the ciliary assembly gene Ift20. Deleting this gene specifically in kidney collecting duct cells prevents cilia formation and promotes rapid postnatal cystic expansion of the kidney. Dividing collecting duct cells in early stages of cyst formation fail to properly orient their mitotic spindles along the tubule, whereas nondividing cells improperly position their centrosomes. At later stages, cells lacking cilia have increased canonical Wnt signaling and increased rates of proliferation. Thus, IFT20 functions to couple extracellular events to cell proliferation and differentiation.  相似文献   

6.
Primary cilia are non-motile sensory organelles that project from cells in many tissues. The role of renal primary cilium-based signalling in regulating epithelial cell proliferation and differentiation is highlighted by studies showing that defects of the cilium lead to epithelial de-differentiation, over proliferation and polycystic kidney disease. Recent studies show that renal primary cilia may also play a role in controlling epithelial differentiation during renal repair. After injury, renal cilium length increases dramatically and then undergoes a normalization that coincides with structural and functional repair in both human patients and mouse models of renal injury. These changes in cilium length are likely to modulate cilium-based signalling, but the injury-related factors that influence renal primary cilium length have yet to be determined. Here, we investigated the effect of three factors commonly associated with renal injury on renal cilium length in an in vitro setting. MDCK (Madin Darby canine kidney) cell cultures bearing primary cilia were treated with BSA to simulate albuminuria, cobalt chloride to simulate hypoxia and the inflammation-related cytokine tumour necrosis factor α. Primary cilium length was only increased in cultures treated with cobalt chloride. Our results suggest a role for hypoxia and the induction of HIF-1α (hypoxia-inducible factor 1α) in increasing renal primary cilium length following renal injury.  相似文献   

7.
Premature truncation alleles in the ALMS1 gene are a frequent cause of human Alstr?m syndrome. Alstr?m syndrome is a rare disorder characterized by early obesity and sensory impairment, symptoms shared with other genetic diseases affecting proteins of the primary cilium. ALMS1 localizes to centrosomes and ciliary basal bodies, but truncation mutations in Alms1/ALMS1 do not preclude formation of cilia. Here, we show that in vitro knockdown of Alms1 in mice causes stunted cilia on kidney epithelial cells and prevents these cells from increasing calcium influx in response to mechanical stimuli. The stunted-cilium phenotype can be rescued with a 5' fragment of the Alms1 cDNA, which resembles disease-associated alleles. In a mouse model of Alstr?m syndrome, Alms1 protein can be stably expressed from the mutant allele and is required for cilia formation in primary cells. Aged mice developed specific loss of cilia from the kidney proximal tubules, which is associated with foci of apoptosis or proliferation. As renal failure is a common cause of mortality in Alstr?m syndrome patients, we conclude that this disease should be considered as a further example of the class of renal ciliopathies: wild-type or mutant alleles of the Alstr?m syndrome gene can support normal kidney ciliogenesis in vitro and in vivo, but mutant alleles are associated with age-dependent loss of kidney primary cilia.  相似文献   

8.
Mutations of the ankyrin-repeat protein Inversin, a member of a diverse family of more than 12 proteins, cause nephronophthisis (NPH), an autosomal recessive cystic kidney disease associated with extra-renal manifestations such as retinitis pigmentosa, cerebellar aplasia and situs inversus. Most NPH gene products (NPHPs) localize to the cilium, and appear to control the transport of cargo protein to the cilium by forming functional networks. Inversin interacts with NPHP1 and NPHP3, and shares with NPHP4 the ability to antagonize Dishevelled-stimulated canonical Wnt signaling, potentially through recruitment of the Anaphase Promoting Complex (APC/C). However, Dishevelled antagonism may be confined towards the basal body, thereby polarizing motile cilia on the cells of the ventral node and respiratory tract. Inversin is essential for recruiting Dishevelled to the plasma membrane in response to activated Frizzled, a crucial step in planar cell polarity signaling. During vertebrate pronephros development, the Inversin-mediated translocation of Dishevelled appears to orchestrate the migration of cells and differentiation of segments that correspond to the mammalian loop of Henle. Thus, defective tubule migration and elongation may contribute to concentration defects and cause cyst formation in patients with NPH.  相似文献   

9.
The last 10 years has witnessed an explosion in research into roles of cilia in cystic renal disease. Cilia are membrane-enclosed finger-like projections from the cell, usually on the apical surface or facing into a lumen, duct or airway. Ten years ago, the major recognised functions related to classical “9 + 2” cilia in the respiratory and reproductive tracts, where co-ordinated beating clears secretions and assists fertilisation respectively. Primary cilia, which have a “9 + 0” arrangement lacking the central microtubules, were anatomical curiosities but several lines of evidence have implicated them in both true polycystic kidney disease and other cystic renal conditions: ranging from the homology between Caenorhabditis elegans proteins expressed on sensory cilia to mammalian polycystic kidney disease (PKD) 1 and 2 proteins, through the discovery that orpk cystic mice have structurally abnormal cilia to numerous recent studies wherein expression of nearly all cyst-associated proteins has been reported in the cilia or its basal body. Functional studies implicate primary cilia in mechanosensation, photoreception and chemosensation but it is the first of these which appears most important in polycystic kidney disease: in the simplest model, fluid flow across the apical surface of renal cells bends the cilia and induces calcium influx, and this is perturbed in polycystic kidney disease. Downstream effects include changes in cell differentiation and polarity. Pathways such as hedgehog and Wnt signalling may also be regulated by cilia. These data support important roles for cilia in the pathogenesis of cystic kidney diseases but one must not forget that the classic polycystic kidney disease proteins are expressed in several other locations where they may have equally important roles, such as in cell-cell and cell-matrix interactions, whilst it is not just aberrant cilia signalling that can lead to de-differentiation, loss of polarity and other characteristic features of polycystic kidney disease. Understanding how cilia fit into the other aspects of polycystic kidney disease biology is the challenge for the next decade. This article is part of a Special Issue entitled: Polycystic Kidney Disease.  相似文献   

10.
Polycystins and mechanosensation in renal and nodal cilia   总被引:13,自引:0,他引:13  
The external surfaces of the human body, as well as its internal organs, constantly experience different kinds of mechanical stimulations. For example, tubular epithelial cells of the kidney are continuously exposed to a variety of mechanical forces, such as fluid flow shear stress within the lumen of th nephron. The majority of epithelial cells along the nephron, except intercalated cells, possess a primary cilium, an organelle projecting from the cell's apical surface into the luminal space. Despite its discovery over 100 years ago, the primary cilium's function continued to elude researchers for many decades. However, recent studies indicate that renal cilia have a sensory function. Studies on polycystic kidney disease (PKD) have identified many of the molecular players, which should help solve the mystery of how the renal cilium senses fluid flow. In this review, we will summarize the recent breakthroughs in PKD research and discuss the role(s) of the polycystin signaling complex in mediating mechanosensory function by the primary cilium of renal epithelium as well as of the embryonic node.  相似文献   

11.
Mutations in TRPP2 (polycystin-2) cause autosomal dominant polycystic kidney disease (ADPKD), a common genetic disorder characterized by progressive development of fluid-filled cysts in the kidney and other organs. TRPP2 is a Ca(2+)-permeable nonselective cation channel that displays an amazing functional versatility at the cellular level. It has been implicated in the regulation of diverse physiological functions including mechanosensation, cell proliferation, polarity, and apoptosis. TRPP2 localizes to different subcellular compartments, such as the endoplasmic reticulum (ER), the plasma membrane and the primary cilium. The channel appears to have distinct functions in different subcellular compartments. This functional compartmentalization is thought to contribute to the observed versatility and specificity of TRPP2-mediated Ca(2+) signaling. In the primary cilium, TRPP2 has been suggested to function as a mechanosensitive channel that detects fluid flow in the renal tubule lumen, supporting the proposed role of the primary cilium as the unifying pathogenic concept for cystic kidney disease. This review summarizes the known and emerging functions of TRPP2, focusing on the question of how channel function translates into complex morphogenetic programs regulating tubular structure.  相似文献   

12.
13.
Defects in the structure or function of the primary cilium, an antennae-like structure whose functional integrity has been linked to the suppression of uncontrolled kidney epithelial cell proliferation, are a common feature of genetic disorders characterized by kidney cysts. However, the mechanisms by which primary cilia are maintained remain poorly defined. von Hippel-Lindau (VHL) disease is characterized by the development of premalignant renal cysts and arises because of functional inactivation of the VHL tumour suppressor gene product, pVHL. Here, we show that pVHL and glycogen synthase kinase (GSK)3beta are key components of an interlinked signalling pathway that maintains the primary cilium. Although inactivation of either pVHL or GSK3beta alone did not affect cilia maintenance, their combined inactivation leads to loss of cilia. In VHL patients, GSK3beta is subjected to inhibitory phosphorylation in renal cysts, but not in early VHL mutant lesions, and these cysts exhibit reduced frequencies of primary cilia. We propose that pVHL and GSK3beta function together in a ciliary-maintenance signalling network, disruption of which enhances the vulnerability of cells to lose their cilia, thereby promoting cyst formation.  相似文献   

14.
In the past decade, cilia have been found to play important roles in renal cystogenesis. Many genes, such as PKD1 and PKD2 which, when mutated, cause autosomal dominant polycystic kidney disease (ADPKD), have been found to localize to primary cilia. The cilium functions as a sensor to transmit extracellular signals into the cell. Abnormal cilia structure and function are associated with the development of polyscystic kidney disease (PKD). Cilia assembly includes centriole migration to the apical surface of the cell, ciliary vesicle docking and fusion with the cell membrane at the intended site of cilium outgrowth, and microtubule growth from the basal body. This review summarizes the most recent advances in cilia and PKD research, with special emphasis on the mechanisms of cytoplasmic and intraciliary protein transport during ciliogenesis. Birth Defects Research (Part C) 102:174–185, 2014 . © 2014 Wiley Periodicals, Inc .  相似文献   

15.
Primary cilia are found on many epithelial cell types, including renal tubular epithelial cells, where they participate in flow sensing. Disruption of cilia function has been linked to the pathogenesis of polycystic kidney disease. We demonstrated previously that the exocyst, a highly conserved eight-protein membrane trafficking complex, localizes to primary cilia of renal tubular epithelial cells, is required for ciliogenesis, biochemically and genetically interacts with polycystin-2 (the protein product of the polycystic kidney disease 2 gene), and, when disrupted, results in MAPK pathway activation both in vitro and in vivo. The small GTPase Cdc42 is a candidate for regulation of the exocyst at the primary cilium. Here, we demonstrate that Cdc42 biochemically interacts with Sec10, a crucial component of the exocyst complex, and that Cdc42 colocalizes with Sec10 at the primary cilium. Expression of dominant negative Cdc42 and shRNA-mediated knockdown of both Cdc42 and Tuba, a Cdc42 guanine nucleotide exchange factor, inhibit ciliogenesis in Madin-Darby canine kidney cells. Furthermore, exocyst Sec8 and polycystin-2 no longer localize to primary cilia or the ciliary region following Cdc42 and Tuba knockdown. We also show that Sec10 directly interacts with Par6, a member of the Par complex that itself directly interacts with Cdc42. Finally, we show that Cdc42 knockdown results in activation of the MAPK pathway, something observed in cells with dysfunctional primary cilia. These data support a model in which Cdc42 localizes the exocyst to the primary cilium, whereupon the exocyst then targets and docks vesicles carrying proteins necessary for ciliogenesis.  相似文献   

16.
Recent findings show that cilia are sensory organelles that display specific receptors and ion channels, which transmit signals from the extracellular environment via the cilium to the cell to control tissue homeostasis and function. Agenesis of primary cilia or mislocation of ciliary signal components affects human pathologies, such as polycystic kidney disease and disorders associated with Bardet-Biedl syndrome. Primary cilia are essential for hedgehog ligand-induced signaling cascade regulating growth and patterning. Here, we show that the primary cilium in fibroblasts plays a critical role in growth control via platelet-derived growth factor receptor alpha (PDGFRalpha), which localizes to the primary cilium during growth arrest in NIH3T3 cells and primary cultures of mouse embryonic fibroblasts. Ligand-dependent activation of PDGFRalphaalpha is followed by activation of Akt and the Mek1/2-Erk1/2 pathways, with Mek1/2 being phosphorylated within the cilium and at the basal body. Fibroblasts derived from Tg737(orpk) mutants fail to form normal cilia and to upregulate the level of PDGFRalpha; PDGF-AA fails to activate PDGFRalphaalpha and the Mek1/2-Erk1/2 pathway. Signaling through PDGFRbeta, which localizes to the plasma membrane, is maintained at comparable levels in wild-type and mutant cells. We propose that ciliary PDGFRalphaalpha signaling is linked to tissue homeostasis and to mitogenic signaling pathways.  相似文献   

17.
纤毛-多囊蛋白复合物的功能或者结构异常,是导致常染色体显性多囊肾病的主要原因.该复合物除了被认为在正常的肾上皮细胞上起着机械和化学感受器的作用,可能在骨细胞中也有类似的作用.本文总结了多囊蛋白和纤毛的结构、分布特点以及在肾发育过程中所发挥的作用;着重综述了纤毛 多囊蛋白复合物在肾上皮细胞上作为机械和化学感受器,通过影响细胞内一系列的信号途径,调控细胞的基因转录和蛋白合成的最新研究进展,包括与细胞内钙离子变化有关的钙调神经磷酸酶-NFAT途径和PI3K-Atk途径,调控细胞周期的JAK-STAT途径,及维持正常肾结构的Wnt/β连环蛋白信号途径等;还将通过比较在肾上皮细胞上纤毛 多囊蛋白复合物所激活的信号传导途径和在骨细胞中传导机械刺激的信号转导途径的类同,提示在骨细胞中,纤毛 多囊蛋白复合物可能起着在肾上皮细胞上类似的机械感受器作用,为系统性阐明多囊肾病的发病机制,以及揭示失重或负重状态下骨细胞机械感受的分子机制提供了一个新思路.  相似文献   

18.
The major autosomal dominant polycystic kidney disease (ADPKD) genes, PKD1 and PKD2, are wildly expressed at the organ and tissue level. PKD1 encodes polycystin 1 (PC1), a large membrane associated receptor-like protein that can complex with the PKD2 product, PC2. Various cellular locations have been described for both PC1, including the plasma membrane and extracellular vesicles, and PC2, especially the endoplasmic reticulum (ER), but compelling evidence indicates that the primary cilium, a sensory organelle, is the key site for the polycystin complex to prevent PKD. As with other membrane proteins, the ER biogenesis pathway is key to appropriately folding, performing quality control, and exporting fully folded PC1 to the Golgi apparatus. There is a requirement for binding with PC2 and cleavage of PC1 at the GPS for this folding and export to occur. Six different monogenic defects in this pathway lead to cystic disease development, with PC1 apparently particularly sensitive to defects in this general protein processing pathway. Trafficking of membrane proteins, and the polycystins in particular, through the Golgi to the primary cilium have been analyzed in detail, but at this time, there is no clear consensus on a ciliary targeting sequence required to export proteins to the cilium. After transitioning though the trans-Golgi network, polycystin-bearing vesicles are likely sorted to early or recycling endosomes and then transported to the ciliary base, possibly via docking to transition fibers (TF). The membrane-bound polycystin complex then undergoes facilitated trafficking through the transition zone, the diffusion barrier at the base of the cilium, before entering the cilium. Intraflagellar transport (IFT) may be involved in moving the polycystins along the cilia, but data also indicates other mechanisms. The ciliary polycystin complex can be ubiquitinated and removed from cilia by internalization at the ciliary base and may be sent back to the plasma membrane for recycling or to lysosomes for degradation. Monogenic defects in processes regulating the protein composition of cilia are associated with syndromic disorders involving many organ systems, reflecting the pleotropic role of cilia during development and for tissue maintenance. Many of these ciliopathies have renal involvement, likely because of faulty polycystin signaling from cilia. Understanding the expression, maturation and trafficking of the polycystins helps understand PKD pathogenesis and suggests opportunities for therapeutic intervention.  相似文献   

19.
A transcriptional network in polycystic kidney disease   总被引:11,自引:0,他引:11  
  相似文献   

20.
The primary cilium is a ubiquitous, non-motile microtubular organelle lacking the central pair of microtubules found in motile cilia. Primary cilia are surrounded by a membrane, which has a unique complement of membrane proteins, and may thus be functionally different from the plasma membrane. The function of the primary cilium remains largely unknown. However, primary cilia have important sensory transducer properties, including the response of renal epithelial cells to fluid flow or mechanical stimulation. Recently, renal cystic diseases have been associated with dysfunctional ciliary proteins. Although the sensory properties of renal epithelial primary cilia may be associated with functional channel activity in the organelle, information in this regard is still lacking. This may be related to the inherent difficulties in assessing electrical activity in this rather small and narrow organelle. In the present study, we provide the first direct electrophysiological evidence for the presence of single channel currents from isolated primary cilia of LLC-PK1 renal epithelial cells. Several channel phenotypes were observed, and addition of vasopressin increased cation channel activity, which suggests the regulation, by the cAMP pathway of ciliary conductance. Ion channel reconstitution of ciliary versus plasma membranes indicated a much higher channel density in cilia. At least three channel proteins, polycystin-2, TRPC1, and interestingly, the alpha-epithelial sodium channel, were immunodetected in this organelle. Ion channel activity in the primary cilium of renal cells may be an important component of its role as a sensory transducer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号