共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Changkeun Lee Anne S. Tibbetts Gisela Kramer Dean R. Appling 《The Journal of biological chemistry》2009,284(49):34116-34125
Initiation of protein synthesis in mitochondria and chloroplasts normally uses a formylated initiator methionyl-tRNA (fMet-tRNAfMet). However, mitochondrial protein synthesis in Saccharomyces cerevisiae can initiate with nonformylated Met-tRNAfMet, as demonstrated in yeast mutants in which the nuclear gene encoding mitochondrial methionyl-tRNA formyltransferase (FMT1) has been deleted. The role of formylation of the initiator tRNA is not known, but in vitro formylation increases binding of Met-tRNAfMet to translation initiation factor 2 (IF2). We hypothesize the existence of an accessory factor that assists mitochondrial IF2 (mIF2) in utilizing unformylated Met-tRNAfMet. This accessory factor might be unnecessary when formylated Met-tRNAfMet is present but becomes essential when only the unformylated species are available. Using a synthetic petite genetic screen in yeast, we identified a mutation in the AEP3 gene that caused a synthetic respiratory-defective phenotype together with Δfmt1. The same aep3 mutation also caused a synthetic respiratory defect in cells lacking formylated Met-tRNAfMet due to loss of the MIS1 gene that encodes the mitochondrial C1-tetrahydrofolate synthase. The AEP3 gene encodes a peripheral mitochondrial inner membrane protein that stabilizes mitochondrially encoded ATP6/8 mRNA. Here we show that the AEP3 protein (Aep3p) physically interacts with yeast mIF2 both in vitro and in vivo and promotes the binding of unformylated initiator tRNA to yeast mIF2. We propose that Aep3p functions as an accessory initiation factor in mitochondrial protein synthesis. 相似文献
12.
13.
14.
15.
Acinetobacter baumannii is an important nosocomial pathogen, causing a variety of opportunistic infections of the skin, soft tissues and wounds, urinary tract infections, secondary meningitis, pneumonia and bacteremia. Over 63% of A. baumannii infections occurring in the United States are caused by multidrug resistant isolates, and pan-resistant isolates have begun to emerge that are resistant to all clinically relevant antibiotics. The complement system represents the first line of defense against invading pathogens. However, many A. baumannii isolates, especially those causing severe bacteremia are resistant to complement-mediated killing, though the underlying mechanisms remain poorly understood. Here we show for the first time that A. baumannii binds host-derived plasminogen and we identify the translation elongation factor Tuf as a moonlighting plasminogen-binding protein that is exposed on the outer surface of A. baumannii. Binding of plasminogen to Tuf is at least partly dependent on lysine residues and ionic interactions. Plasminogen, once bound to Tuf can be converted to active plasmin and proteolytically degrade fibrinogen as well as the key complement component C3b. Thus, Tuf acts as a multifunctional protein that may contribute to virulence of A. baumannii by aiding in dissemination and evasion of the complement system. 相似文献
16.
17.
18.
19.
Mdm12p, a Component Required for Mitochondrial Inheritance That Is Conserved between Budding and Fission Yeast 总被引:14,自引:1,他引:14 下载免费PDF全文
Saccharomyces cerevisiae cells lacking the MDM12 gene product display temperature-sensitive growth and possess abnormally large, round mitochondria that are defective for inheritance by daughter buds. Analysis of the wild-type MDM12 gene revealed its product to be a 31-kD polypeptide that is homologous to a protein of the fission yeast Schizosaccharomyces pombe. When expressed in S. cerevisiae, the S. pombe Mdm12p homolog conferred a dominant-negative phenotype of giant mitochondria and aberrant mitochondrial distribution, suggesting partial functional conservation of Mdm12p activity between budding and fission yeast. The S. cerevisiae Mdm12p was localized by indirect immunofluorescence microscopy and by subcellular fractionation and immunodetection to the mitochondrial outer membrane and displayed biochemical properties of an integral membrane protein. Mdm12p is the third mitochondrial outer membrane protein required for normal mitochondrial morphology and distribution to be identified in S. cerevisiae and the first such mitochondrial component that is conserved between two different species. 相似文献